PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rae-P3.26

Theorem rae-P3.26 263
Description: Redundant Antecedent Elimination.
Hypothesis
Ref Expression
rae-P3.26.1 (𝛾 → (𝜑 → (𝜑𝜓)))
Assertion
Ref Expression
rae-P3.26 (𝛾 → (𝜑𝜓))

Proof of Theorem rae-P3.26
StepHypRef Expression
1 rcp-NDASM2of2 194 . . 3 ((𝛾𝜑) → 𝜑)
2 rae-P3.26.1 . . . . 5 (𝛾 → (𝜑 → (𝜑𝜓)))
32rcp-NDIMP1add1 208 . . . 4 ((𝛾𝜑) → (𝜑 → (𝜑𝜓)))
41, 3ndime-P3.6 171 . . 3 ((𝛾𝜑) → (𝜑𝜓))
51, 4ndime-P3.6 171 . 2 ((𝛾𝜑) → 𝜓)
65rcp-NDIMI2 224 1 (𝛾 → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  rae-P3.26.RC  264
  Copyright terms: Public domain W3C validator