HomeHome bfol.mm Proof Explorer
Theorem List (p. 3 of 12)
< Previous  Next >

Mirrors  >  Metamath Home Page  >  PE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for bfol.mm Proof Explorer - 201-300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrcp-NDASM4of4 201 ( 1 2 3 4 ) 4.
((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝛾₄)
 
Theoremrcp-NDASM1of5 202 ( 1 2 3 4 5 ) 1.
((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝛾₁)
 
Theoremrcp-NDASM2of5 203 ( 1 2 3 4 5 ) 2.
((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝛾₂)
 
Theoremrcp-NDASM3of5 204 ( 1 2 3 4 5 ) 3.
((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝛾₃)
 
Theoremrcp-NDASM4of5 205 ( 1 2 3 4 5 ) 4.
((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝛾₄)
 
Theoremrcp-NDASM5of5 206 ( 1 2 3 4 5 ) 5.
((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝛾₅)
 
4.2.2.2  Derived Rules for Importing Previous Results.

These derived rules may be used in place of ndimp-P3.2 167.

 
Theoremrcp-NDIMP0addall 207 ( ) ( 1 ... n ).
𝜑       (𝛾𝜑)
 
Theoremrcp-NDIMP1add1 208 ( 1 ) ( 1 2 ).
(𝛾₁𝜑)       ((𝛾₁𝛾₂) → 𝜑)
 
Theoremrcp-NDIMP2add1 209 ( 1 2 ) ( 1 2 3 ).
((𝛾₁𝛾₂) → 𝜑)       ((𝛾₁𝛾₂𝛾₃) → 𝜑)
 
Theoremrcp-NDIMP3add1 210 ( 1 2 3 ) ( 1 2 3 4 ).
((𝛾₁𝛾₂𝛾₃) → 𝜑)       ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑)
 
Theoremrcp-NDIMP4add1 211 ( 1 2 3 4 ) ( 1 2 3 4 5 ).
((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑)       ((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝜑)
 
Theoremrcp-NDIMP1add2 212 ( 1 ) ( 1 2 3 ).
(𝛾₁𝜑)       ((𝛾₁𝛾₂𝛾₃) → 𝜑)
 
Theoremrcp-NDIMP2add2 213 ( 1 2 ) ( 1 2 3 4 ).
((𝛾₁𝛾₂) → 𝜑)       ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑)
 
Theoremrcp-NDIMP3add2 214 ( 1 2 3 ) ( 1 2 3 4 5 ).
((𝛾₁𝛾₂𝛾₃) → 𝜑)       ((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝜑)
 
Theoremrcp-NDIMP1add3 215 ( 1 ) ( 1 2 3 4 ).
(𝛾₁𝜑)       ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑)
 
Theoremrcp-NDIMP2add3 216 ( 1 2 ) ( 1 2 3 4 5 ).
((𝛾₁𝛾₂) → 𝜑)       ((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝜑)
 
Theoremrcp-NDIMP1add4 217 ( 1 ) ( 1 2 3 4 5 ).
(𝛾₁𝜑)       ((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝜑)
 
4.2.2.3  Derived Rules for Negation Introduction.

These derived rules may be used in place of ndnegi-P3.3 168.

 
Theoremrcp-NDNEGI1 218 ¬ Introduction Recipe.
(𝛾₁𝜑)    &   (𝛾₁ → ¬ 𝜑)        ¬ 𝛾₁
 
Theoremrcp-NDNEGI2 219 ¬ Introduction Recipe.
((𝛾₁𝛾₂) → 𝜑)    &   ((𝛾₁𝛾₂) → ¬ 𝜑)       (𝛾₁ → ¬ 𝛾₂)
 
Theoremrcp-NDNEGI3 220 ¬ Introduction Recipe.
((𝛾₁𝛾₂𝛾₃) → 𝜑)    &   ((𝛾₁𝛾₂𝛾₃) → ¬ 𝜑)       ((𝛾₁𝛾₂) → ¬ 𝛾₃)
 
Theoremrcp-NDNEGI4 221 ¬ Introduction Recipe.
((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑)    &   ((𝛾₁𝛾₂𝛾₃𝛾₄) → ¬ 𝜑)       ((𝛾₁𝛾₂𝛾₃) → ¬ 𝛾₄)
 
Theoremrcp-NDNEGI5 222 ¬ Introduction Recipe.
((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝜑)    &   ((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → ¬ 𝜑)       ((𝛾₁𝛾₂𝛾₃𝛾₄) → ¬ 𝛾₅)
 
4.2.2.4  Derived Rule for Negation Elimination.

This derived rule is used in place of ndnege-P3.4 169 when '𝛾' is empty.

 
Theoremrcp-NDNEGE0 223 This is equivalent to the Principle of Explosion.
𝜑    &    ¬ 𝜑       𝜓
 
4.2.2.5  Derived Rules for Implication Introduction.

These derived rules may be used in place of ndimi-P3.5 170.

 
Theoremrcp-NDIMI2 224 Introduction Recipe.
((𝛾₁𝛾₂) → 𝜑)       (𝛾₁ → (𝛾₂𝜑))
 
Theoremrcp-NDIMI3 225 Introduction Recipe.
((𝛾₁𝛾₂𝛾₃) → 𝜑)       ((𝛾₁𝛾₂) → (𝛾₃𝜑))
 
Theoremrcp-NDIMI4 226 Introduction Recipe.
((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑)       ((𝛾₁𝛾₂𝛾₃) → (𝛾₄𝜑))
 
Theoremrcp-NDIMI5 227 Introduction Recipe.
((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝜑)       ((𝛾₁𝛾₂𝛾₃𝛾₄) → (𝛾₅𝜑))
 
4.2.2.6  Derived Rule for Implication Elimination.

This derived rule replaces ndime-P3.6 171 when '𝛾' is empty.

 
Theoremrcp-NDIME0 228 This is the same is ax-MP 14.
𝜑    &   (𝜑𝜓)       𝜓
 
4.2.2.7  Derived Rule for Conjunction Introduction.

This derived rule is used in place of ndandi-P3.7 172 when '𝛾' is empty.

 
Theoremrcp-NDANDI0 229 '' Introduction.
𝜑    &   𝜓       (𝜑𝜓)
 
4.2.2.8  Derived Rule for Left Conjunction Elimination.

This derived rule is used in place of ndandel-P3.8 173 when '𝛾' is empty.

 
Theoremrcp-NDANDEL0 230 Left '' Elimination.
(𝜑𝜓)       𝜓
 
4.2.2.9  Derived Rule for Right Conjunction Elimination.

This derived rule is used in place of ndander-P3.9 174 when '𝛾' is empty.

 
Theoremrcp-NDANDER0 231 Right '' Elimination.
(𝜑𝜓)       𝜑
 
4.2.2.10  Derived Rule for Left Disjunction Introduction.

This derived rule is used in place of ndoril-P3.10 175 when '𝛾' is empty.

 
Theoremrcp-NDORIL0 232 Left '' Introduction.
𝜑       (𝜓𝜑)
 
4.2.2.11  Derived Rule for Right Disjunction Introduction.

This derived rule is used in place of ndorir-P3.11 176 when '𝛾' is empty.

 
Theoremrcp-NDORIR0 233 Right '' Introduction.
𝜑       (𝜑𝜓)
 
4.2.2.12  Derived Rules for Disjunction Elimination

These derived rules may be used in place of ndore-P3.12 177.

 
Theoremrcp-NDORE1 234 Elimination Recipe.
(𝜑𝜒)    &   (𝜓𝜒)    &   (𝜑𝜓)       𝜒
 
Theoremrcp-NDORE2 235 Elimination Recipe.
((𝛾₁𝜑) → 𝜒)    &   ((𝛾₁𝜓) → 𝜒)    &   (𝛾₁ → (𝜑𝜓))       (𝛾₁𝜒)
 
Theoremrcp-NDORE3 236 Elimination Recipe.
((𝛾₁𝛾₂𝜑) → 𝜒)    &   ((𝛾₁𝛾₂𝜓) → 𝜒)    &   ((𝛾₁𝛾₂) → (𝜑𝜓))       ((𝛾₁𝛾₂) → 𝜒)
 
Theoremrcp-NDORE4 237 Elimination Recipe.
((𝛾₁𝛾₂𝛾₃𝜑) → 𝜒)    &   ((𝛾₁𝛾₂𝛾₃𝜓) → 𝜒)    &   ((𝛾₁𝛾₂𝛾₃) → (𝜑𝜓))       ((𝛾₁𝛾₂𝛾₃) → 𝜒)
 
Theoremrcp-NDORE5 238 Elimination Recipe.
((𝛾₁𝛾₂𝛾₃𝛾₄𝜑) → 𝜒)    &   ((𝛾₁𝛾₂𝛾₃𝛾₄𝜓) → 𝜒)    &   ((𝛾₁𝛾₂𝛾₃𝛾₄) → (𝜑𝜓))       ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜒)
 
4.2.2.13  Derived Rule for Biconditional Introduction.

This derived rule is used in place of ndbii-P3.13 178 when '𝛾' is empty.

 
Theoremrcp-NDBII0 239 '' Introduction.
(𝜑𝜓)    &   (𝜓𝜑)       (𝜑𝜓)
 
4.2.2.14  Derived Rule for Biconditional Forward Implication.

This derived rule is used in place of ndbief-P3.14 179 when '𝛾' is empty.

 
Theoremrcp-NDBIEF0 240 '' Elimination by Forward Implication Introduction.
(𝜑𝜓)       (𝜑𝜓)
 
4.2.2.15  Derived Rule for Biconditional Reverse Implication.

This derived rule is used in place of ndbier-P3.15 180 when '𝛾' is empty.

 
Theoremrcp-NDBIER0 241 '' Elimination by Reverse Implication Introduction.
(𝜑𝜓)       (𝜓𝜑)
 
4.2.3  Closed Forms of Natural Deduction Rules.

The closed form of ndimp-P3.2 167 is just the Hilbert Axiom L1, which we deduce later as axL1-P3.21.CL 253. The closed forms of ndimi-P3.5 170 and ndandi-P3.7 172 are trivial cases of implication identity, which is already availible as rcp-NDASM1of1 192. The closed forms of ndandel-P3.8 173 and ndander-P3.9 174 are also already availible as rcp-NDASM1of2 193 and rcp-NDASM2of2 194.

 
Theoremndnegi-P3.3.CL 242 Closed Form of ndnegi-P3.3 168.
(((𝜑𝜓) ∧ (𝜑 → ¬ 𝜓)) → ¬ 𝜑)
 
Theoremndnege-P3.4.CL 243 Closed Form of ndnege-P3.4 169.
((𝜑 ∧ ¬ 𝜑) → 𝜓)
 
Theoremndime-P3.6.CL 244 Closed Form of ndime-P3.6 171.
((𝜑 ∧ (𝜑𝜓)) → 𝜓)
 
Theoremndoril-P3.10.CL 245 Closed Form of ndoril-P3.10 175.
(𝜑 → (𝜓𝜑))
 
Theoremndorir-P3.11.CL 246 Closed Form of ndorir-P3.11 176.
(𝜑 → (𝜑𝜓))
 
Theoremndore-P3.12.CL 247 Closed Form of ndore-P3.12 177.
(((𝜑𝜒) ∧ (𝜓𝜒) ∧ (𝜑𝜓)) → 𝜒)
 
Theoremndbii-P3.13.CL 248 Closed Form of ndbii-P3.13 178.
(((𝜑𝜓) ∧ (𝜓𝜑)) → (𝜑𝜓))
 
Theoremndbief-P3.14.CL 249 Closed Form of ndbief-P3.14 179.
((𝜑𝜓) → (𝜑𝜓))
 
Theoremndbier-P3.15.CL 250 Closed Form of ndbier-P3.15 180.
((𝜑𝜓) → (𝜓𝜑))
 
4.2.4  A More Convenient form of Law of Excluded Middle.
 
Theoremndexclmid-P3.16.AC 251 Alternate Form of Excluded Middle.
(𝛾 → (𝜑 ∨ ¬ 𝜑))
 
4.3  Revisiting Chapter 1.
 
4.3.1  Propositional Axioms L1 and L2.
 
TheoremaxL1-P3.21 252 Re-derived Deductive Form of Axiom L1.
(𝛾𝜑)       (𝛾 → (𝜓𝜑))
 
TheoremaxL1-P3.21.CL 253 Closed Form of axL1-P3.21 252 (Axiom L1).
(𝜑 → (𝜓𝜑))
 
TheoremaxL2-P3.22 254 Re-derived Deductive Form of Axiom L2.
(𝛾 → (𝜑 → (𝜓𝜒)))       (𝛾 → ((𝜑𝜓) → (𝜑𝜒)))
 
TheoremaxL2-P3.22.RC 255 Inference Form of axL2-P3.22 254.
(𝜑 → (𝜓𝜒))       ((𝜑𝜓) → (𝜑𝜒))
 
TheoremaxL2-P3.22.CL 256 Closed Form of axL2-P3.22 254 (Axiom L2).
((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
 
4.3.2  Other Implication Laws.
 
Theoremmae-P3.23 257 Middle Antecedent Elimination.
(𝛾 → (𝜑 → (𝜓𝜒)))    &   (𝛾𝜓)       (𝛾 → (𝜑𝜒))
 
Theoremmae-P3.23.RC 258 Inference Form of mae-P3.23 257.
(𝜑 → (𝜓𝜒))    &   𝜓       (𝜑𝜒)
 
Theoremsyl-P3.24 259 Syllogism.
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜓𝜒))       (𝛾 → (𝜑𝜒))
 
Theoremsyl-P3.24.RC 260 Inference Form of syl-P3.24.RC 260.
(𝜑𝜓)    &   (𝜓𝜒)       (𝜑𝜒)
 
Theoremdsyl-P3.25 261 Double Syllogism.
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜓𝜒))    &   (𝛾 → (𝜒𝜗))       (𝛾 → (𝜑𝜗))
 
Theoremdsyl-P3.25.RC 262 Inference Form of dsyl-P3.25 261.
(𝜑𝜓)    &   (𝜓𝜒)    &   (𝜒𝜗)       (𝜑𝜗)
 
Theoremrae-P3.26 263 Redundant Antecedent Elimination.
(𝛾 → (𝜑 → (𝜑𝜓)))       (𝛾 → (𝜑𝜓))
 
Theoremrae-P3.26.RC 264 Inference Form of rae-P3.26 263.
(𝜑 → (𝜑𝜓))       (𝜑𝜓)
 
Theoremimcomm-P3.27 265 Commutation of Antecedents.
(𝛾 → (𝜑 → (𝜓𝜒)))       (𝛾 → (𝜓 → (𝜑𝜒)))
 
Theoremimcomm-P3.27.RC 266 Inference Form of imcomm-P3.27 265.
(𝜑 → (𝜓𝜒))       (𝜓 → (𝜑𝜒))
 
Theoremimsubl-P3.28a 267 Implication Substitution (left).
(𝛾 → (𝜑𝜓))       (𝛾 → ((𝜓𝜒) → (𝜑𝜒)))
 
Theoremimsubl-P3.28a.RC 268 Inference Form of imsubl-P3.28a 267.
(𝜑𝜓)       ((𝜓𝜒) → (𝜑𝜒))
 
Theoremimsubr-P3.28b 269 Implication Substitution (right).
(𝛾 → (𝜑𝜓))       (𝛾 → ((𝜒𝜑) → (𝜒𝜓)))
 
Theoremimsubr-P3.28b.RC 270 Inference Form of imsubr-P3.28b 269.
(𝜑𝜓)       ((𝜒𝜑) → (𝜒𝜓))
 
Theoremimsubd-P3.28c 271 Implication Substitution (dual) .

This can also be called "Linking Syllogism" because the result is the statement that adding the missing inner link between the two hypotheses links the entire chain as a consequence.

The mneumonic is as follows...

If ( 1 2 ) and ( 3 4 ) then ( ( 2 3 ) ( 1 4 ) )...

or ( left-middle right-middle ) ( left-outer right-outer ).

One can substitute ( 1 1 ) for ( 1 2 ), or ( 3 3 ) for ( 3 4 ) to see how imsubr-P3.28b 269 and imsubl-P3.28a 267 are related as special cases.

(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜒𝜗))       (𝛾 → ((𝜓𝜒) → (𝜑𝜗)))
 
Theoremimsubd-P3.28c.RC 272 Inference Form of imsubd-P3.28c 271.
(𝜑𝜓)    &   (𝜒𝜗)       ((𝜓𝜒) → (𝜑𝜗))
 
4.3.3  Double Negation Laws.
 
Theoremdnegi-P3.29 273 Double Negation Introduction.

This statement does not require ndexclmid-P3.16 181, and is thus deducible with intuitionist logic.

(𝛾𝜑)       (𝛾 → ¬ ¬ 𝜑)
 
Theoremdnegi-P3.29.RC 274 Inference Form of dnegi-P3.29 273.
𝜑        ¬ ¬ 𝜑
 
Theoremdnegi-P3.29.CL 275 Closed Form of dnegi-P3.29 273.
(𝜑 → ¬ ¬ 𝜑)
 
Theoremdnege-P3.30 276 Double Negation Elimination.

This statement is equivalent to ndexclmid-P3.16 181, thus it is not deducible with intuitionist logic.

(𝛾 → ¬ ¬ 𝜑)       (𝛾𝜑)
 
Theoremdnege-P3.30.RC 277 Inference Form of dnege-P3.30 276.
¬ ¬ 𝜑       𝜑
 
Theoremdnege-P3.30.CL 278 Closed Form of dnege-P3.30 276.
(¬ ¬ 𝜑𝜑)
 
4.3.4  Transposition Laws (including Axiom L3).
 
Theoremtrnsp-P3.31a 279 Transposition Variant A (negation introduction).

This statement is the deductive form of trnsp-P1.15a 76. It does not require the Law of Excluded Middle, and is thus deducible with intuitionist logic.

(𝛾 → (𝜑 → ¬ 𝜓))       (𝛾 → (𝜓 → ¬ 𝜑))
 
Theoremtrnsp-P3.31a.RC 280 Inference Form of trnsp-P3.31a 279.
(𝜑 → ¬ 𝜓)       (𝜓 → ¬ 𝜑)
 
Theoremtrnsp-P3.31a.CL 281 Closed Form of trnsp-P3.31a 279.
((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑))
 
Theoremtrnsp-P3.31b 282 Transposition Variant B (negation elimination).

This statement is the deductive form of trnsp-P1.15b 78. It is equivalent to Axiom L3 and requires the Law of Excluded Middle. It is thus not deducible with intuitionist logic.

(𝛾 → (¬ 𝜑𝜓))       (𝛾 → (¬ 𝜓𝜑))
 
Theoremtrnsp-P3.31b.RC 283 Inference Form of trnsp-P3.31b 282.
𝜑𝜓)       𝜓𝜑)
 
Theoremtrnsp-P3.31b.CL 284 Closed Form of trnsp-P3.31b 282.
((¬ 𝜑𝜓) → (¬ 𝜓𝜑))
 
Theoremtrnsp-P3.31c 285 Transposition Variant C (negation introduction).

This statement is the deductive form of trnsp-P1.15c 80. It does not require the Law of Excluded Middle, and is thus deducible with intuitionist logic.

(𝛾 → (𝜑𝜓))       (𝛾 → (¬ 𝜓 → ¬ 𝜑))
 
Theoremtrnsp-P3.31c.RC 286 Inference Form of trnsp-P3.31c 285.
(𝜑𝜓)       𝜓 → ¬ 𝜑)
 
Theoremtrnsp-P3.31c.CL 287 Closed Form of trnsp-P3.31c 285.
((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
 
Theoremtrnsp-P3.31d 288 Transposition Variant D (negation elimination).

This statement is the deductive form of trnsp-P1.15d 83 (and Axiom L3). It requires the Law of Excluded Middle and is thus not deducible with intuitionist logic.

(𝛾 → (¬ 𝜑 → ¬ 𝜓))       (𝛾 → (𝜓𝜑))
 
Theoremtrnsp-P3.31d.RC 289 Inference Form of trnsp-P3.31d 288.
𝜑 → ¬ 𝜓)       (𝜓𝜑)
 
Theoremtrnsp-P3.31d.CL 290 Closed Form of trnsp-P3.31d 288 (Axiom L3).

This is a restatement of Axiom L3, deduced via natural deduction.

((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))
 
4.3.5  Other Laws Involving Negation.
 
Theoremmt-P3.32a 291 Modus Tollens.

This statement is the deductive form of nclav-P1.14 73. It does not rely on the Law of Excluded Middle, and is thus deducible with intuitionist logic.

(𝛾 → (𝜑 → ¬ 𝜑))       (𝛾 → ¬ 𝜑)
 
Theoremmt-P3.32a.RC 292 Inference Form of mt-P3.32a 291.
(𝜑 → ¬ 𝜑)        ¬ 𝜑
 
Theoremmt-3.32a.CL 293 Closed Form of mt-P3.32a 291.
((𝜑 → ¬ 𝜑) → ¬ 𝜑)
 
Theoremnmt-P3.32b 294 Negated Modus Tollens.

This statement is the deductive form of clav-P1.12 68. It requires the Law of Excluded Middle and is thus not deducible with intuitionist logic.

(𝛾 → (¬ 𝜑𝜑))       (𝛾𝜑)
 
Theoremnmt-P3.32b.RC 295 Inference Form of nmt-P3.32b 294.
𝜑𝜑)       𝜑
 
Theoremnmt-3.32b.CL 296 Closed Form of nmt-P3.32b 294.
((¬ 𝜑𝜑) → 𝜑)
 
4.4  Revisiting Chapter 2.
 
4.4.1  Biconditional Equivalence Properties.
 
Theorembiref-P3.33a 297 Equivalence Property: '' Reflexivity.
(𝜑𝜑)
 
Theorembisym-P3.33b 298 Equivalence Property: '' Symmetry.
(𝛾 → (𝜑𝜓))       (𝛾 → (𝜓𝜑))
 
Theorembisym-P3.33b.RC 299 Inference Form of bisym-P3.33b 298.
(𝜑𝜓)       (𝜓𝜑)
 
Theorembisym-P3.33b.CL 300 Closed Form of bisym-P3.33b 298.
((𝜑𝜓) → (𝜓𝜑))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1125
  Copyright terms: Public domain < Previous  Next >