| bfol.mm
Proof Explorer Theorem List (p. 3 of 12) |
< Previous Next >
|
|
Mirrors > Metamath Home Page > PE Home Page > Theorem List Contents This page: Page List | |||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rcp-NDASM4of4 201 | ( 1 ∧ 2 ∧ 3 ∧ 4 ) → 4. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝛾₄) | ||
| Theorem | rcp-NDASM1of5 202 | ( 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ) → 1. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅) → 𝛾₁) | ||
| Theorem | rcp-NDASM2of5 203 | ( 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ) → 2. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅) → 𝛾₂) | ||
| Theorem | rcp-NDASM3of5 204 | ( 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ) → 3. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅) → 𝛾₃) | ||
| Theorem | rcp-NDASM4of5 205 | ( 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ) → 4. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅) → 𝛾₄) | ||
| Theorem | rcp-NDASM5of5 206 | ( 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ) → 5. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅) → 𝛾₅) | ||
These derived rules may be used in place of ndimp-P3.2 167. | ||
| Theorem | rcp-NDIMP0addall 207 | ( ) ⇒ ( 1 ∧... ∧ n ). † |
| ⊢ 𝜑 ⇒ ⊢ (𝛾 → 𝜑) | ||
| Theorem | rcp-NDIMP1add1 208 | ( 1 ) ⇒ ( 1 ∧ 2 ). † |
| ⊢ (𝛾₁ → 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂) → 𝜑) | ||
| Theorem | rcp-NDIMP2add1 209 | ( 1 ∧ 2 ) ⇒ ( 1 ∧ 2 ∧ 3 ). † |
| ⊢ ((𝛾₁ ∧ 𝛾₂) → 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝜑) | ||
| Theorem | rcp-NDIMP3add1 210 | ( 1 ∧ 2 ∧ 3 ) ⇒ ( 1 ∧ 2 ∧ 3 ∧ 4 ). † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝜑) | ||
| Theorem | rcp-NDIMP4add1 211 | ( 1 ∧ 2 ∧ 3 ∧ 4 ) ⇒ ( 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ). † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅) → 𝜑) | ||
| Theorem | rcp-NDIMP1add2 212 | ( 1 ) ⇒ ( 1 ∧ 2 ∧ 3 ). † |
| ⊢ (𝛾₁ → 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝜑) | ||
| Theorem | rcp-NDIMP2add2 213 | ( 1 ∧ 2 ) ⇒ ( 1 ∧ 2 ∧ 3 ∧ 4 ). † |
| ⊢ ((𝛾₁ ∧ 𝛾₂) → 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝜑) | ||
| Theorem | rcp-NDIMP3add2 214 | ( 1 ∧ 2 ∧ 3 ) ⇒ ( 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ). † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅) → 𝜑) | ||
| Theorem | rcp-NDIMP1add3 215 | ( 1 ) ⇒ ( 1 ∧ 2 ∧ 3 ∧ 4 ). † |
| ⊢ (𝛾₁ → 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝜑) | ||
| Theorem | rcp-NDIMP2add3 216 | ( 1 ∧ 2 ) ⇒ ( 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ). † |
| ⊢ ((𝛾₁ ∧ 𝛾₂) → 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅) → 𝜑) | ||
| Theorem | rcp-NDIMP1add4 217 | ( 1 ) ⇒ ( 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ). † |
| ⊢ (𝛾₁ → 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅) → 𝜑) | ||
These derived rules may be used in place of ndnegi-P3.3 168. | ||
| Theorem | rcp-NDNEGI1 218 | ¬ Introduction Recipe. † |
| ⊢ (𝛾₁ → 𝜑) & ⊢ (𝛾₁ → ¬ 𝜑) ⇒ ⊢ ¬ 𝛾₁ | ||
| Theorem | rcp-NDNEGI2 219 | ¬ Introduction Recipe. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂) → 𝜑) & ⊢ ((𝛾₁ ∧ 𝛾₂) → ¬ 𝜑) ⇒ ⊢ (𝛾₁ → ¬ 𝛾₂) | ||
| Theorem | rcp-NDNEGI3 220 | ¬ Introduction Recipe. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝜑) & ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → ¬ 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂) → ¬ 𝛾₃) | ||
| Theorem | rcp-NDNEGI4 221 | ¬ Introduction Recipe. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝜑) & ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → ¬ 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → ¬ 𝛾₄) | ||
| Theorem | rcp-NDNEGI5 222 | ¬ Introduction Recipe. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅) → 𝜑) & ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅) → ¬ 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → ¬ 𝛾₅) | ||
This derived rule is used in place of ndnege-P3.4 169 when '𝛾' is empty. | ||
| Theorem | rcp-NDNEGE0 223 | This is equivalent to the Principle of Explosion. † |
| ⊢ 𝜑 & ⊢ ¬ 𝜑 ⇒ ⊢ 𝜓 | ||
These derived rules may be used in place of ndimi-P3.5 170. | ||
| Theorem | rcp-NDIMI2 224 | → Introduction Recipe. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂) → 𝜑) ⇒ ⊢ (𝛾₁ → (𝛾₂ → 𝜑)) | ||
| Theorem | rcp-NDIMI3 225 | → Introduction Recipe. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂) → (𝛾₃ → 𝜑)) | ||
| Theorem | rcp-NDIMI4 226 | → Introduction Recipe. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → (𝛾₄ → 𝜑)) | ||
| Theorem | rcp-NDIMI5 227 | → Introduction Recipe. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅) → 𝜑) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → (𝛾₅ → 𝜑)) | ||
This derived rule replaces ndime-P3.6 171 when '𝛾' is empty. | ||
| Theorem | rcp-NDIME0 228 | This is the same is ax-MP 14. † |
| ⊢ 𝜑 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ 𝜓 | ||
This derived rule is used in place of ndandi-P3.7 172 when '𝛾' is empty. | ||
| Theorem | rcp-NDANDI0 229 | '∧' Introduction. † |
| ⊢ 𝜑 & ⊢ 𝜓 ⇒ ⊢ (𝜑 ∧ 𝜓) | ||
This derived rule is used in place of ndandel-P3.8 173 when '𝛾' is empty. | ||
| Theorem | rcp-NDANDEL0 230 | Left '∧' Elimination. † |
| ⊢ (𝜑 ∧ 𝜓) ⇒ ⊢ 𝜓 | ||
This derived rule is used in place of ndander-P3.9 174 when '𝛾' is empty. | ||
| Theorem | rcp-NDANDER0 231 | Right '∧' Elimination. † |
| ⊢ (𝜑 ∧ 𝜓) ⇒ ⊢ 𝜑 | ||
This derived rule is used in place of ndoril-P3.10 175 when '𝛾' is empty. | ||
| Theorem | rcp-NDORIL0 232 | Left '∨' Introduction. † |
| ⊢ 𝜑 ⇒ ⊢ (𝜓 ∨ 𝜑) | ||
This derived rule is used in place of ndorir-P3.11 176 when '𝛾' is empty. | ||
| Theorem | rcp-NDORIR0 233 | Right '∨' Introduction. † |
| ⊢ 𝜑 ⇒ ⊢ (𝜑 ∨ 𝜓) | ||
These derived rules may be used in place of ndore-P3.12 177. | ||
| Theorem | rcp-NDORE1 234 | ∨ Elimination Recipe. † |
| ⊢ (𝜑 → 𝜒) & ⊢ (𝜓 → 𝜒) & ⊢ (𝜑 ∨ 𝜓) ⇒ ⊢ 𝜒 | ||
| Theorem | rcp-NDORE2 235 | ∨ Elimination Recipe. † |
| ⊢ ((𝛾₁ ∧ 𝜑) → 𝜒) & ⊢ ((𝛾₁ ∧ 𝜓) → 𝜒) & ⊢ (𝛾₁ → (𝜑 ∨ 𝜓)) ⇒ ⊢ (𝛾₁ → 𝜒) | ||
| Theorem | rcp-NDORE3 236 | ∨ Elimination Recipe. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝜑) → 𝜒) & ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝜓) → 𝜒) & ⊢ ((𝛾₁ ∧ 𝛾₂) → (𝜑 ∨ 𝜓)) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂) → 𝜒) | ||
| Theorem | rcp-NDORE4 237 | ∨ Elimination Recipe. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝜑) → 𝜒) & ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝜓) → 𝜒) & ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → (𝜑 ∨ 𝜓)) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝜒) | ||
| Theorem | rcp-NDORE5 238 | ∨ Elimination Recipe. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝜑) → 𝜒) & ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝜓) → 𝜒) & ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → (𝜑 ∨ 𝜓)) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝜒) | ||
This derived rule is used in place of ndbii-P3.13 178 when '𝛾' is empty. | ||
| Theorem | rcp-NDBII0 239 | '↔' Introduction. † |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜓 → 𝜑) ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
This derived rule is used in place of ndbief-P3.14 179 when '𝛾' is empty. | ||
| Theorem | rcp-NDBIEF0 240 | '↔' Elimination by Forward Implication Introduction. † |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
This derived rule is used in place of ndbier-P3.15 180 when '𝛾' is empty. | ||
| Theorem | rcp-NDBIER0 241 | '↔' Elimination by Reverse Implication Introduction. † |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜓 → 𝜑) | ||
The closed form of ndimp-P3.2 167 is just the Hilbert Axiom L1, which we deduce later as axL1-P3.21.CL 253. The closed forms of ndimi-P3.5 170 and ndandi-P3.7 172 are trivial cases of implication identity, which is already availible as rcp-NDASM1of1 192. The closed forms of ndandel-P3.8 173 and ndander-P3.9 174 are also already availible as rcp-NDASM1of2 193 and rcp-NDASM2of2 194. | ||
| Theorem | ndnegi-P3.3.CL 242 | Closed Form of ndnegi-P3.3 168. † |
| ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓)) → ¬ 𝜑) | ||
| Theorem | ndnege-P3.4.CL 243 | Closed Form of ndnege-P3.4 169. † |
| ⊢ ((𝜑 ∧ ¬ 𝜑) → 𝜓) | ||
| Theorem | ndime-P3.6.CL 244 | Closed Form of ndime-P3.6 171. † |
| ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) | ||
| Theorem | ndoril-P3.10.CL 245 | Closed Form of ndoril-P3.10 175. † |
| ⊢ (𝜑 → (𝜓 ∨ 𝜑)) | ||
| Theorem | ndorir-P3.11.CL 246 | Closed Form of ndorir-P3.11 176. † |
| ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | ||
| Theorem | ndore-P3.12.CL 247 | Closed Form of ndore-P3.12 177. † |
| ⊢ (((𝜑 → 𝜒) ∧ (𝜓 → 𝜒) ∧ (𝜑 ∨ 𝜓)) → 𝜒) | ||
| Theorem | ndbii-P3.13.CL 248 | Closed Form of ndbii-P3.13 178. † |
| ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓)) | ||
| Theorem | ndbief-P3.14.CL 249 | Closed Form of ndbief-P3.14 179. † |
| ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | ||
| Theorem | ndbier-P3.15.CL 250 | Closed Form of ndbier-P3.15 180. † |
| ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | ||
| Theorem | ndexclmid-P3.16.AC 251 | Alternate Form of Excluded Middle. |
| ⊢ (𝛾 → (𝜑 ∨ ¬ 𝜑)) | ||
| Theorem | axL1-P3.21 252 | Re-derived Deductive Form of Axiom L1. † |
| ⊢ (𝛾 → 𝜑) ⇒ ⊢ (𝛾 → (𝜓 → 𝜑)) | ||
| Theorem | axL1-P3.21.CL 253 | Closed Form of axL1-P3.21 252 (Axiom L1). † |
| ⊢ (𝜑 → (𝜓 → 𝜑)) | ||
| Theorem | axL2-P3.22 254 | Re-derived Deductive Form of Axiom L2. † |
| ⊢ (𝛾 → (𝜑 → (𝜓 → 𝜒))) ⇒ ⊢ (𝛾 → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | ||
| Theorem | axL2-P3.22.RC 255 | Inference Form of axL2-P3.22 254. † |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) | ||
| Theorem | axL2-P3.22.CL 256 | Closed Form of axL2-P3.22 254 (Axiom L2). † |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | ||
| Theorem | mae-P3.23 257 | Middle Antecedent Elimination. † |
| ⊢ (𝛾 → (𝜑 → (𝜓 → 𝜒))) & ⊢ (𝛾 → 𝜓) ⇒ ⊢ (𝛾 → (𝜑 → 𝜒)) | ||
| Theorem | mae-P3.23.RC 258 | Inference Form of mae-P3.23 257. † |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ 𝜓 ⇒ ⊢ (𝜑 → 𝜒) | ||
| Theorem | syl-P3.24 259 | Syllogism. † |
| ⊢ (𝛾 → (𝜑 → 𝜓)) & ⊢ (𝛾 → (𝜓 → 𝜒)) ⇒ ⊢ (𝛾 → (𝜑 → 𝜒)) | ||
| Theorem | syl-P3.24.RC 260 | Inference Form of syl-P3.24.RC 260. † |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||
| Theorem | dsyl-P3.25 261 | Double Syllogism. † |
| ⊢ (𝛾 → (𝜑 → 𝜓)) & ⊢ (𝛾 → (𝜓 → 𝜒)) & ⊢ (𝛾 → (𝜒 → 𝜗)) ⇒ ⊢ (𝛾 → (𝜑 → 𝜗)) | ||
| Theorem | dsyl-P3.25.RC 262 | Inference Form of dsyl-P3.25 261. † |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜓 → 𝜒) & ⊢ (𝜒 → 𝜗) ⇒ ⊢ (𝜑 → 𝜗) | ||
| Theorem | rae-P3.26 263 | Redundant Antecedent Elimination. † |
| ⊢ (𝛾 → (𝜑 → (𝜑 → 𝜓))) ⇒ ⊢ (𝛾 → (𝜑 → 𝜓)) | ||
| Theorem | rae-P3.26.RC 264 | Inference Form of rae-P3.26 263. † |
| ⊢ (𝜑 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | imcomm-P3.27 265 | Commutation of Antecedents. † |
| ⊢ (𝛾 → (𝜑 → (𝜓 → 𝜒))) ⇒ ⊢ (𝛾 → (𝜓 → (𝜑 → 𝜒))) | ||
| Theorem | imcomm-P3.27.RC 266 | Inference Form of imcomm-P3.27 265. † |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜓 → (𝜑 → 𝜒)) | ||
| Theorem | imsubl-P3.28a 267 | Implication Substitution (left). † |
| ⊢ (𝛾 → (𝜑 → 𝜓)) ⇒ ⊢ (𝛾 → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) | ||
| Theorem | imsubl-P3.28a.RC 268 | Inference Form of imsubl-P3.28a 267. † |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) | ||
| Theorem | imsubr-P3.28b 269 | Implication Substitution (right). † |
| ⊢ (𝛾 → (𝜑 → 𝜓)) ⇒ ⊢ (𝛾 → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) | ||
| Theorem | imsubr-P3.28b.RC 270 | Inference Form of imsubr-P3.28b 269. † |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) | ||
| Theorem | imsubd-P3.28c 271 |
Implication Substitution (dual) †.
This can also be called "Linking Syllogism" because the result is the statement that adding the missing inner link between the two hypotheses links the entire chain as a consequence. The mneumonic is as follows... If ( 1 → 2 ) and ( 3 → 4 ) then ( ( 2 → 3 ) → ( 1 → 4 ) )... or ( left-middle → right-middle ) → ( left-outer → right-outer ). One can substitute ( 1 → 1 ) for ( 1 → 2 ), or ( 3 → 3 ) for ( 3 → 4 ) to see how imsubr-P3.28b 269 and imsubl-P3.28a 267 are related as special cases.
|
| ⊢ (𝛾 → (𝜑 → 𝜓)) & ⊢ (𝛾 → (𝜒 → 𝜗)) ⇒ ⊢ (𝛾 → ((𝜓 → 𝜒) → (𝜑 → 𝜗))) | ||
| Theorem | imsubd-P3.28c.RC 272 | Inference Form of imsubd-P3.28c 271. † |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜗) ⇒ ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜗)) | ||
| Theorem | dnegi-P3.29 273 |
Double Negation Introduction. †
This statement does not require ndexclmid-P3.16 181, and is thus deducible with intuitionist logic. |
| ⊢ (𝛾 → 𝜑) ⇒ ⊢ (𝛾 → ¬ ¬ 𝜑) | ||
| Theorem | dnegi-P3.29.RC 274 | Inference Form of dnegi-P3.29 273. † |
| ⊢ 𝜑 ⇒ ⊢ ¬ ¬ 𝜑 | ||
| Theorem | dnegi-P3.29.CL 275 | Closed Form of dnegi-P3.29 273. † |
| ⊢ (𝜑 → ¬ ¬ 𝜑) | ||
| Theorem | dnege-P3.30 276 |
Double Negation Elimination.
This statement is equivalent to ndexclmid-P3.16 181, thus it is not deducible with intuitionist logic. |
| ⊢ (𝛾 → ¬ ¬ 𝜑) ⇒ ⊢ (𝛾 → 𝜑) | ||
| Theorem | dnege-P3.30.RC 277 | Inference Form of dnege-P3.30 276. |
| ⊢ ¬ ¬ 𝜑 ⇒ ⊢ 𝜑 | ||
| Theorem | dnege-P3.30.CL 278 | Closed Form of dnege-P3.30 276. |
| ⊢ (¬ ¬ 𝜑 → 𝜑) | ||
| Theorem | trnsp-P3.31a 279 |
Transposition Variant A (negation introduction). †
This statement is the deductive form of trnsp-P1.15a 76. It does not require the Law of Excluded Middle, and is thus deducible with intuitionist logic. |
| ⊢ (𝛾 → (𝜑 → ¬ 𝜓)) ⇒ ⊢ (𝛾 → (𝜓 → ¬ 𝜑)) | ||
| Theorem | trnsp-P3.31a.RC 280 | Inference Form of trnsp-P3.31a 279. † |
| ⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜓 → ¬ 𝜑) | ||
| Theorem | trnsp-P3.31a.CL 281 | Closed Form of trnsp-P3.31a 279. † |
| ⊢ ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑)) | ||
| Theorem | trnsp-P3.31b 282 |
Transposition Variant B (negation elimination).
This statement is the deductive form of trnsp-P1.15b 78. It is equivalent to Axiom L3 and requires the Law of Excluded Middle. It is thus not deducible with intuitionist logic. |
| ⊢ (𝛾 → (¬ 𝜑 → 𝜓)) ⇒ ⊢ (𝛾 → (¬ 𝜓 → 𝜑)) | ||
| Theorem | trnsp-P3.31b.RC 283 | Inference Form of trnsp-P3.31b 282. |
| ⊢ (¬ 𝜑 → 𝜓) ⇒ ⊢ (¬ 𝜓 → 𝜑) | ||
| Theorem | trnsp-P3.31b.CL 284 | Closed Form of trnsp-P3.31b 282. |
| ⊢ ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) | ||
| Theorem | trnsp-P3.31c 285 |
Transposition Variant C (negation introduction). †
This statement is the deductive form of trnsp-P1.15c 80. It does not require the Law of Excluded Middle, and is thus deducible with intuitionist logic. |
| ⊢ (𝛾 → (𝜑 → 𝜓)) ⇒ ⊢ (𝛾 → (¬ 𝜓 → ¬ 𝜑)) | ||
| Theorem | trnsp-P3.31c.RC 286 | Inference Form of trnsp-P3.31c 285. † |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (¬ 𝜓 → ¬ 𝜑) | ||
| Theorem | trnsp-P3.31c.CL 287 | Closed Form of trnsp-P3.31c 285. † |
| ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | ||
| Theorem | trnsp-P3.31d 288 |
Transposition Variant D (negation elimination).
This statement is the deductive form of trnsp-P1.15d 83 (and Axiom L3). It requires the Law of Excluded Middle and is thus not deducible with intuitionist logic. |
| ⊢ (𝛾 → (¬ 𝜑 → ¬ 𝜓)) ⇒ ⊢ (𝛾 → (𝜓 → 𝜑)) | ||
| Theorem | trnsp-P3.31d.RC 289 | Inference Form of trnsp-P3.31d 288. |
| ⊢ (¬ 𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜓 → 𝜑) | ||
| Theorem | trnsp-P3.31d.CL 290 |
Closed Form of trnsp-P3.31d 288 (Axiom L3).
This is a restatement of Axiom L3, deduced via natural deduction. |
| ⊢ ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑)) | ||
| Theorem | mt-P3.32a 291 |
Modus Tollens. †
This statement is the deductive form of nclav-P1.14 73. It does not rely on the Law of Excluded Middle, and is thus deducible with intuitionist logic. |
| ⊢ (𝛾 → (𝜑 → ¬ 𝜑)) ⇒ ⊢ (𝛾 → ¬ 𝜑) | ||
| Theorem | mt-P3.32a.RC 292 | Inference Form of mt-P3.32a 291. † |
| ⊢ (𝜑 → ¬ 𝜑) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | mt-3.32a.CL 293 | Closed Form of mt-P3.32a 291. † |
| ⊢ ((𝜑 → ¬ 𝜑) → ¬ 𝜑) | ||
| Theorem | nmt-P3.32b 294 |
Negated Modus Tollens.
This statement is the deductive form of clav-P1.12 68. It requires the Law of Excluded Middle and is thus not deducible with intuitionist logic. |
| ⊢ (𝛾 → (¬ 𝜑 → 𝜑)) ⇒ ⊢ (𝛾 → 𝜑) | ||
| Theorem | nmt-P3.32b.RC 295 | Inference Form of nmt-P3.32b 294. |
| ⊢ (¬ 𝜑 → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | nmt-3.32b.CL 296 | Closed Form of nmt-P3.32b 294. |
| ⊢ ((¬ 𝜑 → 𝜑) → 𝜑) | ||
| Theorem | biref-P3.33a 297 | Equivalence Property: '↔' Reflexivity. † |
| ⊢ (𝜑 ↔ 𝜑) | ||
| Theorem | bisym-P3.33b 298 | Equivalence Property: '↔' Symmetry. † |
| ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → (𝜓 ↔ 𝜑)) | ||
| Theorem | bisym-P3.33b.RC 299 | Inference Form of bisym-P3.33b 298. † |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜓 ↔ 𝜑) | ||
| Theorem | bisym-P3.33b.CL 300 | Closed Form of bisym-P3.33b 298. † |
| ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |