PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDASM5of5

Theorem rcp-NDASM5of5 206
Description: ( 1 2 3 4 5 ) 5.
Assertion
Ref Expression
rcp-NDASM5of5 ((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝛾₅)

Proof of Theorem rcp-NDASM5of5
StepHypRef Expression
1 ndasm-P3.1 166 . 2 (((𝛾₁𝛾₂𝛾₃𝛾₄) ∧ 𝛾₅) → 𝛾₅)
21rcp-NDJOIN5 191 1 ((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝛾₅)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-rcp-AND4 162  wff-rcp-AND5 164
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND5 165
This theorem is referenced by:  example-E3.2b  312
  Copyright terms: Public domain W3C validator