PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  example-E3.2b

Theorem example-E3.2b 312
Description: Convert Nested Implication to Sequent.
Hypothesis
Ref Expression
example-E3.2b.1 (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅𝜓)))))
Assertion
Ref Expression
example-E3.2b ((𝜑₁𝜑₂𝜑₃𝜑₄𝜑₅) → 𝜓)

Proof of Theorem example-E3.2b
StepHypRef Expression
1 rcp-NDASM5of5 206 . 2 ((𝜑₁𝜑₂𝜑₃𝜑₄𝜑₅) → 𝜑₅)
2 rcp-NDASM4of4 201 . . . 4 ((𝜑₁𝜑₂𝜑₃𝜑₄) → 𝜑₄)
3 rcp-NDASM3of3 197 . . . . . 6 ((𝜑₁𝜑₂𝜑₃) → 𝜑₃)
4 rcp-NDASM2of2 194 . . . . . . . 8 ((𝜑₁𝜑₂) → 𝜑₂)
5 example-E3.2b.1 . . . . . . . . 9 (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅𝜓)))))
65rcp-NDIMP1add1 208 . . . . . . . 8 ((𝜑₁𝜑₂) → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅𝜓)))))
74, 6ndime-P3.6 171 . . . . . . 7 ((𝜑₁𝜑₂) → (𝜑₃ → (𝜑₄ → (𝜑₅𝜓))))
87rcp-NDIMP2add1 209 . . . . . 6 ((𝜑₁𝜑₂𝜑₃) → (𝜑₃ → (𝜑₄ → (𝜑₅𝜓))))
93, 8ndime-P3.6 171 . . . . 5 ((𝜑₁𝜑₂𝜑₃) → (𝜑₄ → (𝜑₅𝜓)))
109rcp-NDIMP3add1 210 . . . 4 ((𝜑₁𝜑₂𝜑₃𝜑₄) → (𝜑₄ → (𝜑₅𝜓)))
112, 10ndime-P3.6 171 . . 3 ((𝜑₁𝜑₂𝜑₃𝜑₄) → (𝜑₅𝜓))
1211rcp-NDIMP4add1 211 . 2 ((𝜑₁𝜑₂𝜑₃𝜑₄𝜑₅) → (𝜑₅𝜓))
131, 12ndime-P3.6 171 1 ((𝜑₁𝜑₂𝜑₃𝜑₄𝜑₅) → 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-rcp-AND3 160  wff-rcp-AND4 162  wff-rcp-AND5 164
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND3 161  df-rcp-AND4 163  df-rcp-AND5 165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator