Proof of Theorem example-E3.2b
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM5of5 206 |
. 2
⊢ ((𝜑₁ ∧ 𝜑₂ ∧ 𝜑₃ ∧ 𝜑₄ ∧ 𝜑₅) → 𝜑₅) |
| 2 | | rcp-NDASM4of4 201 |
. . . 4
⊢ ((𝜑₁ ∧ 𝜑₂ ∧ 𝜑₃ ∧ 𝜑₄) → 𝜑₄) |
| 3 | | rcp-NDASM3of3 197 |
. . . . . 6
⊢ ((𝜑₁ ∧ 𝜑₂ ∧ 𝜑₃) → 𝜑₃) |
| 4 | | rcp-NDASM2of2 194 |
. . . . . . . 8
⊢ ((𝜑₁ ∧ 𝜑₂) → 𝜑₂) |
| 5 | | example-E3.2b.1 |
. . . . . . . . 9
⊢ (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅ → 𝜓))))) |
| 6 | 5 | rcp-NDIMP1add1 208 |
. . . . . . . 8
⊢ ((𝜑₁ ∧ 𝜑₂) → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅ → 𝜓))))) |
| 7 | 4, 6 | ndime-P3.6 171 |
. . . . . . 7
⊢ ((𝜑₁ ∧ 𝜑₂) → (𝜑₃ → (𝜑₄ → (𝜑₅ → 𝜓)))) |
| 8 | 7 | rcp-NDIMP2add1 209 |
. . . . . 6
⊢ ((𝜑₁ ∧ 𝜑₂ ∧ 𝜑₃) → (𝜑₃ → (𝜑₄ → (𝜑₅ → 𝜓)))) |
| 9 | 3, 8 | ndime-P3.6 171 |
. . . . 5
⊢ ((𝜑₁ ∧ 𝜑₂ ∧ 𝜑₃) → (𝜑₄ → (𝜑₅ → 𝜓))) |
| 10 | 9 | rcp-NDIMP3add1 210 |
. . . 4
⊢ ((𝜑₁ ∧ 𝜑₂ ∧ 𝜑₃ ∧ 𝜑₄) → (𝜑₄ → (𝜑₅ → 𝜓))) |
| 11 | 2, 10 | ndime-P3.6 171 |
. . 3
⊢ ((𝜑₁ ∧ 𝜑₂ ∧ 𝜑₃ ∧ 𝜑₄) → (𝜑₅ → 𝜓)) |
| 12 | 11 | rcp-NDIMP4add1 211 |
. 2
⊢ ((𝜑₁ ∧ 𝜑₂ ∧ 𝜑₃ ∧ 𝜑₄ ∧ 𝜑₅) → (𝜑₅ → 𝜓)) |
| 13 | 1, 12 | ndime-P3.6 171 |
1
⊢ ((𝜑₁ ∧ 𝜑₂ ∧ 𝜑₃ ∧ 𝜑₄ ∧ 𝜑₅) → 𝜓) |