PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  example-E3.2a

Theorem example-E3.2a 311
Description: Convert Nested Conjunction to Nested Implication.
Hypothesis
Ref Expression
example-E3.2a.1 (((((𝜑₁𝜑₂) ∧ 𝜑₃) ∧ 𝜑₄) ∧ 𝜑₅) → 𝜓)
Assertion
Ref Expression
example-E3.2a (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅𝜓)))))

Proof of Theorem example-E3.2a
StepHypRef Expression
1 example-E3.2a.1 . . . . 5 (((((𝜑₁𝜑₂) ∧ 𝜑₃) ∧ 𝜑₄) ∧ 𝜑₅) → 𝜓)
21export-P3.34b.RC 308 . . . 4 ((((𝜑₁𝜑₂) ∧ 𝜑₃) ∧ 𝜑₄) → (𝜑₅𝜓))
32export-P3.34b.RC 308 . . 3 (((𝜑₁𝜑₂) ∧ 𝜑₃) → (𝜑₄ → (𝜑₅𝜓)))
43export-P3.34b.RC 308 . 2 ((𝜑₁𝜑₂) → (𝜑₃ → (𝜑₄ → (𝜑₅𝜓))))
54export-P3.34b.RC 308 1 (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅𝜓)))))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator