| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > example-E3.1b | |||
| Description: Convert Nested Implication to Nested Conjunction. † |
| Ref | Expression |
|---|---|
| example-E3.1b.1 | ⊢ (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅ → 𝜓))))) |
| Ref | Expression |
|---|---|
| example-E3.1b | ⊢ (((((𝜑₁ ∧ 𝜑₂) ∧ 𝜑₃) ∧ 𝜑₄) ∧ 𝜑₅) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | example-E3.1b.1 | . . . . 5 ⊢ (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅ → 𝜓))))) | |
| 2 | 1 | import-P3.34a.RC 306 | . . . 4 ⊢ ((𝜑₁ ∧ 𝜑₂) → (𝜑₃ → (𝜑₄ → (𝜑₅ → 𝜓)))) |
| 3 | 2 | import-P3.34a.RC 306 | . . 3 ⊢ (((𝜑₁ ∧ 𝜑₂) ∧ 𝜑₃) → (𝜑₄ → (𝜑₅ → 𝜓))) |
| 4 | 3 | import-P3.34a.RC 306 | . 2 ⊢ ((((𝜑₁ ∧ 𝜑₂) ∧ 𝜑₃) ∧ 𝜑₄) → (𝜑₅ → 𝜓)) |
| 5 | 4 | import-P3.34a.RC 306 | 1 ⊢ (((((𝜑₁ ∧ 𝜑₂) ∧ 𝜑₃) ∧ 𝜑₄) ∧ 𝜑₅) → 𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |