PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  example-E3.1b

Theorem example-E3.1b 310
Description: Convert Nested Implication to Nested Conjunction.
Hypothesis
Ref Expression
example-E3.1b.1 (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅𝜓)))))
Assertion
Ref Expression
example-E3.1b (((((𝜑₁𝜑₂) ∧ 𝜑₃) ∧ 𝜑₄) ∧ 𝜑₅) → 𝜓)

Proof of Theorem example-E3.1b
StepHypRef Expression
1 example-E3.1b.1 . . . . 5 (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅𝜓)))))
21import-P3.34a.RC 306 . . . 4 ((𝜑₁𝜑₂) → (𝜑₃ → (𝜑₄ → (𝜑₅𝜓))))
32import-P3.34a.RC 306 . . 3 (((𝜑₁𝜑₂) ∧ 𝜑₃) → (𝜑₄ → (𝜑₅𝜓)))
43import-P3.34a.RC 306 . 2 ((((𝜑₁𝜑₂) ∧ 𝜑₃) ∧ 𝜑₄) → (𝜑₅𝜓))
54import-P3.34a.RC 306 1 (((((𝜑₁𝜑₂) ∧ 𝜑₃) ∧ 𝜑₄) ∧ 𝜑₅) → 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator