PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  example-E3.1a

Theorem example-E3.1a 309
Description: Convert Sequent to Nested Implication.
Hypothesis
Ref Expression
example-E3.1a.1 ((𝜑₁𝜑₂𝜑₃𝜑₄𝜑₅) → 𝜓)
Assertion
Ref Expression
example-E3.1a (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅𝜓)))))

Proof of Theorem example-E3.1a
StepHypRef Expression
1 example-E3.1a.1 . . . . 5 ((𝜑₁𝜑₂𝜑₃𝜑₄𝜑₅) → 𝜓)
21rcp-NDIMI5 227 . . . 4 ((𝜑₁𝜑₂𝜑₃𝜑₄) → (𝜑₅𝜓))
32rcp-NDIMI4 226 . . 3 ((𝜑₁𝜑₂𝜑₃) → (𝜑₄ → (𝜑₅𝜓)))
43rcp-NDIMI3 225 . 2 ((𝜑₁𝜑₂) → (𝜑₃ → (𝜑₄ → (𝜑₅𝜓))))
54rcp-NDIMI2 224 1 (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅𝜓)))))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-rcp-AND5 164
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND3 161  df-rcp-AND4 163  df-rcp-AND5 165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator