| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > example-E3.1a | |||
| Description: Convert Sequent to Nested Implication. † |
| Ref | Expression |
|---|---|
| example-E3.1a.1 | ⊢ ((𝜑₁ ∧ 𝜑₂ ∧ 𝜑₃ ∧ 𝜑₄ ∧ 𝜑₅) → 𝜓) |
| Ref | Expression |
|---|---|
| example-E3.1a | ⊢ (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅ → 𝜓))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | example-E3.1a.1 | . . . . 5 ⊢ ((𝜑₁ ∧ 𝜑₂ ∧ 𝜑₃ ∧ 𝜑₄ ∧ 𝜑₅) → 𝜓) | |
| 2 | 1 | rcp-NDIMI5 227 | . . . 4 ⊢ ((𝜑₁ ∧ 𝜑₂ ∧ 𝜑₃ ∧ 𝜑₄) → (𝜑₅ → 𝜓)) |
| 3 | 2 | rcp-NDIMI4 226 | . . 3 ⊢ ((𝜑₁ ∧ 𝜑₂ ∧ 𝜑₃) → (𝜑₄ → (𝜑₅ → 𝜓))) |
| 4 | 3 | rcp-NDIMI3 225 | . 2 ⊢ ((𝜑₁ ∧ 𝜑₂) → (𝜑₃ → (𝜑₄ → (𝜑₅ → 𝜓)))) |
| 5 | 4 | rcp-NDIMI2 224 | 1 ⊢ (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅ → 𝜓))))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-rcp-AND5 164 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-rcp-AND3 161 df-rcp-AND4 163 df-rcp-AND5 165 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |