PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDIMI5

Theorem rcp-NDIMI5 227
Description: Introduction Recipe.
Hypothesis
Ref Expression
rcp-NDIMI5.1 ((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝜑)
Assertion
Ref Expression
rcp-NDIMI5 ((𝛾₁𝛾₂𝛾₃𝛾₄) → (𝛾₅𝜑))

Proof of Theorem rcp-NDIMI5
StepHypRef Expression
1 rcp-NDIMI5.1 . . 3 ((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝜑)
21rcp-NDSEP5 188 . 2 (((𝛾₁𝛾₂𝛾₃𝛾₄) ∧ 𝛾₅) → 𝜑)
32ndimi-P3.5 170 1 ((𝛾₁𝛾₂𝛾₃𝛾₄) → (𝛾₅𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-rcp-AND4 162  wff-rcp-AND5 164
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND5 165
This theorem is referenced by:  example-E3.1a  309
  Copyright terms: Public domain W3C validator