PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndimi-P3.5

Theorem ndimi-P3.5 170
Description: Natural Deduction: '' Introduction Rule.

If we can deduce '𝜓' after assuming '𝜑', then we can conclude '𝜑𝜓' with '𝜑' discharged.

Hypothesis
Ref Expression
ndimi-P3.5.1 ((𝛾𝜑) → 𝜓)
Assertion
Ref Expression
ndimi-P3.5 (𝛾 → (𝜑𝜓))

Proof of Theorem ndimi-P3.5
StepHypRef Expression
1 ndimi-P3.5.1 . 2 ((𝛾𝜑) → 𝜓)
21export-P2.10b.SH 143 1 (𝛾 → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  ndfalsei-P3.19  184  rcp-NDASM1of1  192  rcp-NDIMP0addall  207  rcp-NDIMI2  224  rcp-NDIMI3  225  rcp-NDIMI4  226  rcp-NDIMI5  227
  Copyright terms: Public domain W3C validator