PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  export-P2.10b.SH

Theorem export-P2.10b.SH 143
Description: Inference from export-P2.10b 142.
Hypothesis
Ref Expression
export-P2.10b.SH.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
export-P2.10b.SH (𝜑 → (𝜓𝜒))

Proof of Theorem export-P2.10b.SH
StepHypRef Expression
1 export-P2.10b.SH.1 . 2 ((𝜑𝜓) → 𝜒)
2 export-P2.10b 142 . 2 (((𝜑𝜓) → 𝜒) → (𝜑 → (𝜓𝜒)))
31, 2ax-MP 14 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  orelim-P2.11c  150  ndnegi-P3.3  168  ndimi-P3.5  170  ndore-P3.12  177
  Copyright terms: Public domain W3C validator