Proof of Theorem orelim-P2.11c
| Step | Hyp | Ref
| Expression |
| 1 | | simpl-P2.9a 134 |
. . . . 5
⊢ ((((𝜑 → 𝜒) ∧
(𝜓 → 𝜒))
∧ (𝜑 ∨ 𝜓)) → ((𝜑 →
𝜒) ∧ (𝜓
→ 𝜒))) |
| 2 | 1 | simpl-P2.9a.AC.SH 135 |
. . . 4
⊢ ((((𝜑 → 𝜒) ∧
(𝜓 → 𝜒))
∧ (𝜑 ∨ 𝜓)) → (𝜑 →
𝜒)) |
| 3 | | simpr-P2.9b 136 |
. . . . . 6
⊢ ((((𝜑 → 𝜒) ∧
(𝜓 → 𝜒))
∧ (𝜑 ∨ 𝜓)) → (𝜑 ∨
𝜓)) |
| 4 | | df-or-D2.3 145 |
. . . . . . 7
⊢ ((𝜑 ∨ 𝜓) ↔
(¬ 𝜑 → 𝜓)) |
| 5 | 4 | bifwd-P2.5a.SH 112 |
. . . . . 6
⊢ ((𝜑 ∨ 𝜓) →
(¬ 𝜑 → 𝜓)) |
| 6 | 3, 5 | syl-P1.2 34 |
. . . . 5
⊢ ((((𝜑 → 𝜒) ∧
(𝜓 → 𝜒))
∧ (𝜑 ∨ 𝜓)) → (¬ 𝜑
→ 𝜓)) |
| 7 | 1 | simpr-P2.9b.AC.SH 137 |
. . . . 5
⊢ ((((𝜑 → 𝜒) ∧
(𝜓 → 𝜒))
∧ (𝜑 ∨ 𝜓)) → (𝜓 →
𝜒)) |
| 8 | 6, 7 | sylt-P1.9.AC.2SH 62 |
. . . 4
⊢ ((((𝜑 → 𝜒) ∧
(𝜓 → 𝜒))
∧ (𝜑 ∨ 𝜓)) → (¬ 𝜑
→ 𝜒)) |
| 9 | 2, 8 | pfbycase-P1.17.AC.2SH 90 |
. . 3
⊢ ((((𝜑 → 𝜒) ∧
(𝜓 → 𝜒))
∧ (𝜑 ∨ 𝜓)) → 𝜒) |
| 10 | 9 | export-P2.10b.SH 143 |
. 2
⊢ (((𝜑 → 𝜒) ∧
(𝜓 → 𝜒))
→ ((𝜑 ∨ 𝜓) → 𝜒)) |
| 11 | 10 | export-P2.10b.SH 143 |
1
⊢ ((𝜑 → 𝜒) →
((𝜓 → 𝜒)
→ ((𝜑 ∨ 𝜓) → 𝜒))) |