PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  orelim-P2.11c

Theorem orelim-P2.11c 150
Description: '' Elimination Law.

This is also known as the "Proof by Cases" law.

Assertion
Ref Expression
orelim-P2.11c ((𝜑𝜒) → ((𝜓𝜒) → ((𝜑𝜓) → 𝜒)))

Proof of Theorem orelim-P2.11c
StepHypRef Expression
1 simpl-P2.9a 134 . . . . 5 ((((𝜑𝜒) ∧ (𝜓𝜒)) ∧ (𝜑𝜓)) → ((𝜑𝜒) ∧ (𝜓𝜒)))
21simpl-P2.9a.AC.SH 135 . . . 4 ((((𝜑𝜒) ∧ (𝜓𝜒)) ∧ (𝜑𝜓)) → (𝜑𝜒))
3 simpr-P2.9b 136 . . . . . 6 ((((𝜑𝜒) ∧ (𝜓𝜒)) ∧ (𝜑𝜓)) → (𝜑𝜓))
4 df-or-D2.3 145 . . . . . . 7 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
54bifwd-P2.5a.SH 112 . . . . . 6 ((𝜑𝜓) → (¬ 𝜑𝜓))
63, 5syl-P1.2 34 . . . . 5 ((((𝜑𝜒) ∧ (𝜓𝜒)) ∧ (𝜑𝜓)) → (¬ 𝜑𝜓))
71simpr-P2.9b.AC.SH 137 . . . . 5 ((((𝜑𝜒) ∧ (𝜓𝜒)) ∧ (𝜑𝜓)) → (𝜓𝜒))
86, 7sylt-P1.9.AC.2SH 62 . . . 4 ((((𝜑𝜒) ∧ (𝜓𝜒)) ∧ (𝜑𝜓)) → (¬ 𝜑𝜒))
92, 8pfbycase-P1.17.AC.2SH 90 . . 3 ((((𝜑𝜒) ∧ (𝜓𝜒)) ∧ (𝜑𝜓)) → 𝜒)
109export-P2.10b.SH 143 . 2 (((𝜑𝜒) ∧ (𝜓𝜒)) → ((𝜑𝜓) → 𝜒))
1110export-P2.10b.SH 143 1 ((𝜑𝜒) → ((𝜓𝜒) → ((𝜑𝜓) → 𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145
This theorem is referenced by:  orelim-P2.11c.AC.3SH  151
  Copyright terms: Public domain W3C validator