PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  simpr-P2.9b

Theorem simpr-P2.9b 136
Description: '' Right Simplification.
Assertion
Ref Expression
simpr-P2.9b ((𝜑𝜓) → 𝜓)

Proof of Theorem simpr-P2.9b
StepHypRef Expression
1 df-and-D2.2 133 . . 3 ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
21bifwd-P2.5a.SH 112 . 2 ((𝜑𝜓) → ¬ (𝜑 → ¬ 𝜓))
3 simpr-L2.2b 97 . 2 (¬ (𝜑 → ¬ 𝜓) → 𝜓)
42, 3syl-P1.2 34 1 ((𝜑𝜓) → 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  simpr-P2.9b.AC.SH  137  import-P2.10a  140  orelim-P2.11c  150  ndasm-P3.1  166
  Copyright terms: Public domain W3C validator