PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  import-P2.10a

Theorem import-P2.10a 140
Description: '' Importation Law.
Assertion
Ref Expression
import-P2.10a ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → 𝜒))

Proof of Theorem import-P2.10a
StepHypRef Expression
1 simpr-P2.9b 136 . . 3 ((𝜑𝜓) → 𝜓)
21axL1.SH 30 . 2 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → 𝜓))
3 simpl-P2.9a 134 . . . 4 ((𝜑𝜓) → 𝜑)
43axL1.SH 30 . . 3 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → 𝜑))
5 ax-L1 11 . . 3 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑 → (𝜓𝜒))))
64, 5mpt-P1.8.2AC.2SH 59 . 2 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜓𝜒)))
72, 6mpt-P1.8.2AC.2SH 59 1 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → 𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  import-P2.10a.SH  141
  Copyright terms: Public domain W3C validator