| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > import-P2.10a | |||
| Description: '∧' Importation Law. |
| Ref | Expression |
|---|---|
| import-P2.10a | ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr-P2.9b 136 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 2 | 1 | axL1.SH 30 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜓)) |
| 3 | simpl-P2.9a 134 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 4 | 3 | axL1.SH 30 | . . 3 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜑)) |
| 5 | ax-L1 11 | . . 3 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → (𝜑 → (𝜓 → 𝜒)))) | |
| 6 | 4, 5 | mpt-P1.8.2AC.2SH 59 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → (𝜓 → 𝜒))) |
| 7 | 2, 6 | mpt-P1.8.2AC.2SH 59 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 |
| This theorem is referenced by: import-P2.10a.SH 141 |
| Copyright terms: Public domain | W3C validator |