PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  import-P2.10a.SH

Theorem import-P2.10a.SH 141
Description: Inference from import-P2.10a 140.
Hypothesis
Ref Expression
import-P2.10a.SH.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
import-P2.10a.SH ((𝜑𝜓) → 𝜒)

Proof of Theorem import-P2.10a.SH
StepHypRef Expression
1 import-P2.10a.SH.1 . 2 (𝜑 → (𝜓𝜒))
2 import-P2.10a 140 . 2 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → 𝜒))
31, 2ax-MP 14 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  ndimp-P3.2  167
  Copyright terms: Public domain W3C validator