PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndimp-P3.2

Theorem ndimp-P3.2 167
Description: Natural Deduction: Import Previous Consequent.

Any previous consequent can be re-stated with an additional assumption added.

Hypothesis
Ref Expression
ndimp-P3.2.1 (𝛾𝜑)
Assertion
Ref Expression
ndimp-P3.2 ((𝛾𝜓) → 𝜑)

Proof of Theorem ndimp-P3.2
StepHypRef Expression
1 ndimp-P3.2.1 . . 3 (𝛾𝜑)
21axL1.AC.SH 45 . 2 (𝛾 → (𝜓𝜑))
32import-P2.10a.SH 141 1 ((𝛾𝜓) → 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  ndfalsei-P3.19  184  rcp-NDASM1of2  193  rcp-NDASM1of3  195  rcp-NDASM2of3  196  rcp-NDASM1of4  198  rcp-NDASM2of4  199  rcp-NDASM3of4  200  rcp-NDASM1of5  202  rcp-NDASM2of5  203  rcp-NDASM3of5  204  rcp-NDASM4of5  205  rcp-NDIMP0addall  207  rcp-NDIMP1add1  208  rcp-NDIMP2add1  209  rcp-NDIMP3add1  210  rcp-NDIMP4add1  211
  Copyright terms: Public domain W3C validator