| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndimp-P3.2 | |||
| Description: Natural Deduction: Import
Previous Consequent.
Any previous consequent can be re-stated with an additional assumption added. |
| Ref | Expression |
|---|---|
| ndimp-P3.2.1 | ⊢ (𝛾 → 𝜑) |
| Ref | Expression |
|---|---|
| ndimp-P3.2 | ⊢ ((𝛾 ∧ 𝜓) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndimp-P3.2.1 | . . 3 ⊢ (𝛾 → 𝜑) | |
| 2 | 1 | axL1.AC.SH 45 | . 2 ⊢ (𝛾 → (𝜓 → 𝜑)) |
| 3 | 2 | import-P2.10a.SH 141 | 1 ⊢ ((𝛾 ∧ 𝜓) → 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 |
| This theorem is referenced by: ndfalsei-P3.19 184 rcp-NDASM1of2 193 rcp-NDASM1of3 195 rcp-NDASM2of3 196 rcp-NDASM1of4 198 rcp-NDASM2of4 199 rcp-NDASM3of4 200 rcp-NDASM1of5 202 rcp-NDASM2of5 203 rcp-NDASM3of5 204 rcp-NDASM4of5 205 rcp-NDIMP0addall 207 rcp-NDIMP1add1 208 rcp-NDIMP2add1 209 rcp-NDIMP3add1 210 rcp-NDIMP4add1 211 |
| Copyright terms: Public domain | W3C validator |