PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDASM1of2

Theorem rcp-NDASM1of2 193
Description: ( 1 2 ) 1.
Assertion
Ref Expression
rcp-NDASM1of2 ((𝛾₁𝛾₂) → 𝛾₁)

Proof of Theorem rcp-NDASM1of2
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 (𝛾₁𝛾₁)
21ndimp-P3.2 167 1 ((𝛾₁𝛾₂) → 𝛾₁)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  rcp-NDASM1of3  195  ndnege-P3.4.CL  243  ndime-P3.6.CL  244  ndbii-P3.13.CL  248  bitrns-P3.33c.CL  304  andasim-P3.46-L1  354  andasim-P3.46-L2  355  orasim-P3.48-L1  359  orasim-P3.48-L2  360  ncontra-P4.1  366  falseie-P4.22b  445  idempotand-P4.25a  450  oroverand-P4.27-L4  463  imoverim-P4.30-L1  476  imasor-P4.32-L1  485  imasandint-P4.33b  490  peirce-P4.40  511  exclmid2peirce-P4.41a  512  eqtrns-P5.CL  631  subelofd-P5.CL  643  subaddd-P5.CL  648  submultd-P5.CL  652  lemma-L6.07a-L2  771  spliteq-P6-L1  775  splitelof-P6-L1  777  psubsuccv-P6-L1  805  ndnfrim-P7.3.CL  905  ndnfrand-P7.4.CL  906  ndnfror-P7.5.CL  907  ndnfrbi-P7.6.CL  908  ndsubeqd-P7.CL  913  ndsubelofd-P7.CL  916  ndsubaddd-P7.CL  920  ndsubmultd-P7.CL  923  eqtrns-P7.CL  989  exnegallint-P7  1047  qimeqex-P7-L2  1055
  Copyright terms: Public domain W3C validator