PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDASM1of3

Theorem rcp-NDASM1of3 195
Description: ( 1 2 3 ) 1.
Assertion
Ref Expression
rcp-NDASM1of3 ((𝛾₁𝛾₂𝛾₃) → 𝛾₁)

Proof of Theorem rcp-NDASM1of3
StepHypRef Expression
1 rcp-NDASM1of2 193 . . 3 ((𝛾₁𝛾₂) → 𝛾₁)
21ndimp-P3.2 167 . 2 (((𝛾₁𝛾₂) ∧ 𝛾₃) → 𝛾₁)
32rcp-NDJOIN3 189 1 ((𝛾₁𝛾₂𝛾₃) → 𝛾₁)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  rcp-NDASM1of4  198  ndnegi-P3.3.CL  242  dmorgarev-L4.2  453  andoveror-P4.27-L1  459  oroverim-P4.28-L2  466  psubaddv-P6-L1  807  psubmultv-P6-L1  809
  Copyright terms: Public domain W3C validator