| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-NDASM1of3 | |||
| Description: ( 1 ∧ 2 ∧ 3 ) → 1. † |
| Ref | Expression |
|---|---|
| rcp-NDASM1of3 | ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝛾₁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM1of2 193 | . . 3 ⊢ ((𝛾₁ ∧ 𝛾₂) → 𝛾₁) | |
| 2 | 1 | ndimp-P3.2 167 | . 2 ⊢ (((𝛾₁ ∧ 𝛾₂) ∧ 𝛾₃) → 𝛾₁) |
| 3 | 2 | rcp-NDJOIN3 189 | 1 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝛾₁) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 ∧ wff-rcp-AND3 160 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 df-rcp-AND3 161 |
| This theorem is referenced by: rcp-NDASM1of4 198 ndnegi-P3.3.CL 242 dmorgarev-L4.2 453 andoveror-P4.27-L1 459 oroverim-P4.28-L2 466 psubaddv-P6-L1 807 psubmultv-P6-L1 809 |
| Copyright terms: Public domain | W3C validator |