PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDASM2of3

Theorem rcp-NDASM2of3 196
Description: ( 1 2 3 ) 2.
Assertion
Ref Expression
rcp-NDASM2of3 ((𝛾₁𝛾₂𝛾₃) → 𝛾₂)

Proof of Theorem rcp-NDASM2of3
StepHypRef Expression
1 rcp-NDASM2of2 194 . . 3 ((𝛾₁𝛾₂) → 𝛾₂)
21ndimp-P3.2 167 . 2 (((𝛾₁𝛾₂) ∧ 𝛾₃) → 𝛾₂)
32rcp-NDJOIN3 189 1 ((𝛾₁𝛾₂𝛾₃) → 𝛾₂)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND3 161
This theorem is referenced by:  rcp-NDASM2of4  199  ndnegi-P3.3.CL  242  axL2-P3.22  254  imcomm-P3.27  265  trnsp-P3.31a  279  trnsp-P3.31b  282  trnsp-P3.31c  285  trnsp-P3.31d  288  export-P3.34b  307  orasim-P3.48-L1  359  joinimor-P4.8c  403  sepimorr-P4.9c  412  sepimandl-P4.9d  415  oroverand-P4.27-L4  463  oroverim-P4.28-L2  466  psubaddv-P6-L1  807  psubmultv-P6-L1  809  qimeqex-P7-L2  1055
  Copyright terms: Public domain W3C validator