PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  trnsp-P3.31c

Theorem trnsp-P3.31c 285
Description: Transposition Variant C (negation introduction).

This statement is the deductive form of trnsp-P1.15c 80. It does not require the Law of Excluded Middle, and is thus deducible with intuitionist logic.

Hypothesis
Ref Expression
trnsp-P3.31c.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
trnsp-P3.31c (𝛾 → (¬ 𝜓 → ¬ 𝜑))

Proof of Theorem trnsp-P3.31c
StepHypRef Expression
1 rcp-NDASM3of3 197 . . . 4 ((𝛾 ∧ ¬ 𝜓𝜑) → 𝜑)
2 trnsp-P3.31c.1 . . . . 5 (𝛾 → (𝜑𝜓))
32rcp-NDIMP1add2 212 . . . 4 ((𝛾 ∧ ¬ 𝜓𝜑) → (𝜑𝜓))
41, 3ndime-P3.6 171 . . 3 ((𝛾 ∧ ¬ 𝜓𝜑) → 𝜓)
5 rcp-NDASM2of3 196 . . 3 ((𝛾 ∧ ¬ 𝜓𝜑) → ¬ 𝜓)
64, 5rcp-NDNEGI3 220 . 2 ((𝛾 ∧ ¬ 𝜓) → ¬ 𝜑)
76rcp-NDIMI2 224 1 (𝛾 → (¬ 𝜓 → ¬ 𝜑))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND3 161
This theorem is referenced by:  trnsp-P3.31c.RC  286  trnsp-P3.31c.CL  287  subneg-P3.39  323  sepimandl-P4.9d  415
  Copyright terms: Public domain W3C validator