Proof of Theorem sepimandl-P4.9d
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM3of3 197 |
. . . . . . 7
⊢ ((𝛾 ∧ 𝜑 ∧
¬ 𝜒) → ¬ 𝜒) |
| 2 | | sepimandl-P4.9d.1 |
. . . . . . . . 9
⊢ (𝛾 → ((𝜑 ∧
𝜓) → 𝜒)) |
| 3 | 2 | rcp-NDIMP1add2 212 |
. . . . . . . 8
⊢ ((𝛾 ∧ 𝜑 ∧
¬ 𝜒) → ((𝜑 ∧ 𝜓) →
𝜒)) |
| 4 | 3 | trnsp-P3.31c 285 |
. . . . . . 7
⊢ ((𝛾 ∧ 𝜑 ∧
¬ 𝜒) → (¬ 𝜒 → ¬ (𝜑
∧ 𝜓))) |
| 5 | 1, 4 | ndime-P3.6 171 |
. . . . . 6
⊢ ((𝛾 ∧ 𝜑 ∧
¬ 𝜒) → ¬ (𝜑 ∧ 𝜓)) |
| 6 | | rcp-NDASM2of3 196 |
. . . . . 6
⊢ ((𝛾 ∧ 𝜑 ∧
¬ 𝜒) → 𝜑) |
| 7 | 5, 6 | nprofeliml-P4.6a 389 |
. . . . 5
⊢ ((𝛾 ∧ 𝜑 ∧
¬ 𝜒) → ¬ 𝜓) |
| 8 | 7 | rcp-NDIMI3 225 |
. . . 4
⊢ ((𝛾 ∧ 𝜑) →
(¬ 𝜒 → ¬ 𝜓)) |
| 9 | 8 | trnsp-P3.31d 288 |
. . 3
⊢ ((𝛾 ∧ 𝜑) →
(𝜓 → 𝜒)) |
| 10 | 9 | ndoril-P3.10 175 |
. 2
⊢ ((𝛾 ∧ 𝜑) →
((𝜑 → 𝜒)
∨ (𝜓 → 𝜒))) |
| 11 | | rcp-NDASM2of2 194 |
. . . . 5
⊢ ((𝛾 ∧ ¬ 𝜑)
→ ¬ 𝜑) |
| 12 | 11 | axL1-P3.21 252 |
. . . 4
⊢ ((𝛾 ∧ ¬ 𝜑)
→ (¬ 𝜒 → ¬ 𝜑)) |
| 13 | 12 | trnsp-P3.31d 288 |
. . 3
⊢ ((𝛾 ∧ ¬ 𝜑)
→ (𝜑 → 𝜒)) |
| 14 | 13 | ndorir-P3.11 176 |
. 2
⊢ ((𝛾 ∧ ¬ 𝜑)
→ ((𝜑 → 𝜒) ∨ (𝜓 →
𝜒))) |
| 15 | | ndexclmid-P3.16.AC 251 |
. 2
⊢ (𝛾 → (𝜑 ∨ ¬
𝜑)) |
| 16 | 10, 14, 15 | rcp-NDORE2 235 |
1
⊢ (𝛾 → ((𝜑 →
𝜒) ∨ (𝜓
→ 𝜒))) |