PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  sepimandl-P4.9d

Theorem sepimandl-P4.9d 415
Description: Separate Left Conjunction from Implication.
Hypothesis
Ref Expression
sepimandl-P4.9d.1 (𝛾 → ((𝜑𝜓) → 𝜒))
Assertion
Ref Expression
sepimandl-P4.9d (𝛾 → ((𝜑𝜒) ∨ (𝜓𝜒)))

Proof of Theorem sepimandl-P4.9d
StepHypRef Expression
1 rcp-NDASM3of3 197 . . . . . . 7 ((𝛾𝜑 ∧ ¬ 𝜒) → ¬ 𝜒)
2 sepimandl-P4.9d.1 . . . . . . . . 9 (𝛾 → ((𝜑𝜓) → 𝜒))
32rcp-NDIMP1add2 212 . . . . . . . 8 ((𝛾𝜑 ∧ ¬ 𝜒) → ((𝜑𝜓) → 𝜒))
43trnsp-P3.31c 285 . . . . . . 7 ((𝛾𝜑 ∧ ¬ 𝜒) → (¬ 𝜒 → ¬ (𝜑𝜓)))
51, 4ndime-P3.6 171 . . . . . 6 ((𝛾𝜑 ∧ ¬ 𝜒) → ¬ (𝜑𝜓))
6 rcp-NDASM2of3 196 . . . . . 6 ((𝛾𝜑 ∧ ¬ 𝜒) → 𝜑)
75, 6nprofeliml-P4.6a 389 . . . . 5 ((𝛾𝜑 ∧ ¬ 𝜒) → ¬ 𝜓)
87rcp-NDIMI3 225 . . . 4 ((𝛾𝜑) → (¬ 𝜒 → ¬ 𝜓))
98trnsp-P3.31d 288 . . 3 ((𝛾𝜑) → (𝜓𝜒))
109ndoril-P3.10 175 . 2 ((𝛾𝜑) → ((𝜑𝜒) ∨ (𝜓𝜒)))
11 rcp-NDASM2of2 194 . . . . 5 ((𝛾 ∧ ¬ 𝜑) → ¬ 𝜑)
1211axL1-P3.21 252 . . . 4 ((𝛾 ∧ ¬ 𝜑) → (¬ 𝜒 → ¬ 𝜑))
1312trnsp-P3.31d 288 . . 3 ((𝛾 ∧ ¬ 𝜑) → (𝜑𝜒))
1413ndorir-P3.11 176 . 2 ((𝛾 ∧ ¬ 𝜑) → ((𝜑𝜒) ∨ (𝜓𝜒)))
15 ndexclmid-P3.16.AC 251 . 2 (𝛾 → (𝜑 ∨ ¬ 𝜑))
1610, 14, 15rcp-NDORE2 235 1 (𝛾 → ((𝜑𝜒) ∨ (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-or 144  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  sepimandl-P4.9d.RC  416  sepimandl-P4.9d.CL  417
  Copyright terms: Public domain W3C validator