| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > trnsp-P3.31d | |||
| Description: Transposition Variant D
(negation elimination).
This statement is the deductive form of trnsp-P1.15d 83 (and Axiom L3). It requires the Law of Excluded Middle and is thus not deducible with intuitionist logic. |
| Ref | Expression |
|---|---|
| trnsp-P3.31d.1 | ⊢ (𝛾 → (¬ 𝜑 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| trnsp-P3.31d | ⊢ (𝛾 → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM2of3 196 | . . . 4 ⊢ ((𝛾 ∧ 𝜓 ∧ ¬ 𝜑) → 𝜓) | |
| 2 | rcp-NDASM3of3 197 | . . . . 5 ⊢ ((𝛾 ∧ 𝜓 ∧ ¬ 𝜑) → ¬ 𝜑) | |
| 3 | trnsp-P3.31d.1 | . . . . . 6 ⊢ (𝛾 → (¬ 𝜑 → ¬ 𝜓)) | |
| 4 | 3 | rcp-NDIMP1add2 212 | . . . . 5 ⊢ ((𝛾 ∧ 𝜓 ∧ ¬ 𝜑) → (¬ 𝜑 → ¬ 𝜓)) |
| 5 | 2, 4 | ndime-P3.6 171 | . . . 4 ⊢ ((𝛾 ∧ 𝜓 ∧ ¬ 𝜑) → ¬ 𝜓) |
| 6 | 1, 5 | rcp-NDNEGI3 220 | . . 3 ⊢ ((𝛾 ∧ 𝜓) → ¬ ¬ 𝜑) |
| 7 | 6 | dnege-P3.30 276 | . 2 ⊢ ((𝛾 ∧ 𝜓) → 𝜑) |
| 8 | 7 | rcp-NDIMI2 224 | 1 ⊢ (𝛾 → (𝜓 → 𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-and 132 ∧ wff-rcp-AND3 160 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 |
| This theorem is referenced by: trnsp-P3.31d.RC 289 trnsp-P3.31d.CL 290 sepimandl-P4.9d 415 alloverimex-P5 601 qimeqex-P7-L1 1054 nfrnegconv-P8 1110 |
| Copyright terms: Public domain | W3C validator |