PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  trnsp-P3.31d

Theorem trnsp-P3.31d 288
Description: Transposition Variant D (negation elimination).

This statement is the deductive form of trnsp-P1.15d 83 (and Axiom L3). It requires the Law of Excluded Middle and is thus not deducible with intuitionist logic.

Hypothesis
Ref Expression
trnsp-P3.31d.1 (𝛾 → (¬ 𝜑 → ¬ 𝜓))
Assertion
Ref Expression
trnsp-P3.31d (𝛾 → (𝜓𝜑))

Proof of Theorem trnsp-P3.31d
StepHypRef Expression
1 rcp-NDASM2of3 196 . . . 4 ((𝛾𝜓 ∧ ¬ 𝜑) → 𝜓)
2 rcp-NDASM3of3 197 . . . . 5 ((𝛾𝜓 ∧ ¬ 𝜑) → ¬ 𝜑)
3 trnsp-P3.31d.1 . . . . . 6 (𝛾 → (¬ 𝜑 → ¬ 𝜓))
43rcp-NDIMP1add2 212 . . . . 5 ((𝛾𝜓 ∧ ¬ 𝜑) → (¬ 𝜑 → ¬ 𝜓))
52, 4ndime-P3.6 171 . . . 4 ((𝛾𝜓 ∧ ¬ 𝜑) → ¬ 𝜓)
61, 5rcp-NDNEGI3 220 . . 3 ((𝛾𝜓) → ¬ ¬ 𝜑)
76dnege-P3.30 276 . 2 ((𝛾𝜓) → 𝜑)
87rcp-NDIMI2 224 1 (𝛾 → (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  trnsp-P3.31d.RC  289  trnsp-P3.31d.CL  290  sepimandl-P4.9d  415  alloverimex-P5  601  qimeqex-P7-L1  1054  nfrnegconv-P8  1110
  Copyright terms: Public domain W3C validator