PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qimeqex-P7-L1

Theorem qimeqex-P7-L1 1054
Description: Lemma for qimeqex-P7 1056.
Assertion
Ref Expression
qimeqex-P7-L1 ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))

Proof of Theorem qimeqex-P7-L1
StepHypRef Expression
1 ndnfrall1-P7.7 832 . . . . 5 𝑥𝑥𝜑
2 ndnfrex1-P7.8 833 . . . . 5 𝑥𝑥𝜓
31, 2ndnfrim-P7.3.RC 876 . . . 4 𝑥(∀𝑥𝜑 → ∃𝑥𝜓)
43, 1ndnfrand-P7.4.RC 877 . . 3 𝑥((∀𝑥𝜑 → ∃𝑥𝜓) ∧ ∀𝑥𝜑)
5 ndnfrex1-P7.8 833 . . 3 𝑥𝑥(𝜑𝜓)
6 rcp-NDASM2of2 194 . . . . . . 7 (((∀𝑥𝜑 → ∃𝑥𝜓) ∧ 𝜓) → 𝜓)
76axL1-P3.21 252 . . . . . 6 (((∀𝑥𝜑 → ∃𝑥𝜓) ∧ 𝜓) → (𝜑𝜓))
87exi-P7 951 . . . . 5 (((∀𝑥𝜑 → ∃𝑥𝜓) ∧ 𝜓) → ∃𝑥(𝜑𝜓))
98rcp-NDIMI2 224 . . . 4 ((∀𝑥𝜑 → ∃𝑥𝜓) → (𝜓 → ∃𝑥(𝜑𝜓)))
109rcp-NDIMP1add1 208 . . 3 (((∀𝑥𝜑 → ∃𝑥𝜓) ∧ ∀𝑥𝜑) → (𝜓 → ∃𝑥(𝜑𝜓)))
11 rcp-NDASM1of1 192 . . . 4 ((∀𝑥𝜑 → ∃𝑥𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
1211import-P3.34a.RC 306 . . 3 (((∀𝑥𝜑 → ∃𝑥𝜓) ∧ ∀𝑥𝜑) → ∃𝑥𝜓)
134, 5, 10, 12exe-P7 955 . 2 (((∀𝑥𝜑 → ∃𝑥𝜓) ∧ ∀𝑥𝜑) → ∃𝑥(𝜑𝜓))
141ndnfrneg-P7.2.RC 875 . . . 4 𝑥 ¬ ∀𝑥𝜑
153, 14ndnfrand-P7.4.RC 877 . . 3 𝑥((∀𝑥𝜑 → ∃𝑥𝜓) ∧ ¬ ∀𝑥𝜑)
16 rcp-NDASM2of2 194 . . . . . . . 8 (((∀𝑥𝜑 → ∃𝑥𝜓) ∧ ¬ 𝜑) → ¬ 𝜑)
1716axL1-P3.21 252 . . . . . . 7 (((∀𝑥𝜑 → ∃𝑥𝜓) ∧ ¬ 𝜑) → (¬ 𝜓 → ¬ 𝜑))
1817trnsp-P3.31d 288 . . . . . 6 (((∀𝑥𝜑 → ∃𝑥𝜓) ∧ ¬ 𝜑) → (𝜑𝜓))
1918exi-P7 951 . . . . 5 (((∀𝑥𝜑 → ∃𝑥𝜓) ∧ ¬ 𝜑) → ∃𝑥(𝜑𝜓))
2019rcp-NDIMI2 224 . . . 4 ((∀𝑥𝜑 → ∃𝑥𝜓) → (¬ 𝜑 → ∃𝑥(𝜑𝜓)))
2120rcp-NDIMP1add1 208 . . 3 (((∀𝑥𝜑 → ∃𝑥𝜓) ∧ ¬ ∀𝑥𝜑) → (¬ 𝜑 → ∃𝑥(𝜑𝜓)))
22 rcp-NDASM2of2 194 . . . 4 (((∀𝑥𝜑 → ∃𝑥𝜓) ∧ ¬ ∀𝑥𝜑) → ¬ ∀𝑥𝜑)
23 exnegall-P7 1046 . . . . 5 (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑)
2423bisym-P3.33b.RC 299 . . . 4 (¬ ∀𝑥𝜑 ↔ ∃𝑥 ¬ 𝜑)
2522, 24subimr2-P4.RC 543 . . 3 (((∀𝑥𝜑 → ∃𝑥𝜓) ∧ ¬ ∀𝑥𝜑) → ∃𝑥 ¬ 𝜑)
2615, 5, 21, 25exe-P7 955 . 2 (((∀𝑥𝜑 → ∃𝑥𝜓) ∧ ¬ ∀𝑥𝜑) → ∃𝑥(𝜑𝜓))
27 ndexclmid-P3.16.AC 251 . 2 ((∀𝑥𝜑 → ∃𝑥𝜓) → (∀𝑥𝜑 ∨ ¬ ∀𝑥𝜑))
2813, 26, 27rcp-NDORE2 235 1 ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  qimeqex-P7  1056
  Copyright terms: Public domain W3C validator