PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  axL1-P3.21

Theorem axL1-P3.21 252
Description: Re-derived Deductive Form of Axiom L1.
Hypothesis
Ref Expression
axL1-P3.21.1 (𝛾𝜑)
Assertion
Ref Expression
axL1-P3.21 (𝛾 → (𝜓𝜑))

Proof of Theorem axL1-P3.21
StepHypRef Expression
1 axL1-P3.21.1 . . 3 (𝛾𝜑)
21rcp-NDIMP1add1 208 . 2 ((𝛾𝜓) → 𝜑)
32rcp-NDIMI2 224 1 (𝛾 → (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  axL1-P3.21.CL  253  andasim-P3.46-L2  355  sepimorr-P4.9c  412  sepimandl-P4.9d  415  imoverim-P4.30-L1  476  imasor-P4.32-L2  486  biasandorint-P4.34b  492  specpsub-P6  721  qimeqex-P7-L1  1054  nfrcond-P8  1108
  Copyright terms: Public domain W3C validator