| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > axL1-P3.21 | |||
| Description: Re-derived Deductive Form of Axiom L1. † |
| Ref | Expression |
|---|---|
| axL1-P3.21.1 | ⊢ (𝛾 → 𝜑) |
| Ref | Expression |
|---|---|
| axL1-P3.21 | ⊢ (𝛾 → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axL1-P3.21.1 | . . 3 ⊢ (𝛾 → 𝜑) | |
| 2 | 1 | rcp-NDIMP1add1 208 | . 2 ⊢ ((𝛾 ∧ 𝜓) → 𝜑) |
| 3 | 2 | rcp-NDIMI2 224 | 1 ⊢ (𝛾 → (𝜓 → 𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 |
| This theorem is referenced by: axL1-P3.21.CL 253 andasim-P3.46-L2 355 sepimorr-P4.9c 412 sepimandl-P4.9d 415 imoverim-P4.30-L1 476 imasor-P4.32-L2 486 biasandorint-P4.34b 492 specpsub-P6 721 qimeqex-P7-L1 1054 nfrcond-P8 1108 |
| Copyright terms: Public domain | W3C validator |