Proof of Theorem sepimorr-P4.9c
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM2of2 194 |
. . . 4
⊢ ((𝛾 ∧ 𝜓) →
𝜓) |
| 2 | 1 | axL1-P3.21 252 |
. . 3
⊢ ((𝛾 ∧ 𝜓) →
(𝜑 → 𝜓)) |
| 3 | 2 | ndorir-P3.11 176 |
. 2
⊢ ((𝛾 ∧ 𝜓) →
((𝜑 → 𝜓)
∨ (𝜑 → 𝜒))) |
| 4 | | rcp-NDASM3of3 197 |
. . . . . 6
⊢ ((𝛾 ∧ ¬ 𝜓
∧ 𝜑) → 𝜑) |
| 5 | | sepimorr-P4.9c.1 |
. . . . . . 7
⊢ (𝛾 → (𝜑 →
(𝜓 ∨ 𝜒))) |
| 6 | 5 | rcp-NDIMP1add2 212 |
. . . . . 6
⊢ ((𝛾 ∧ ¬ 𝜓
∧ 𝜑) → (𝜑 → (𝜓 ∨ 𝜒))) |
| 7 | 4, 6 | ndime-P3.6 171 |
. . . . 5
⊢ ((𝛾 ∧ ¬ 𝜓
∧ 𝜑) → (𝜓 ∨ 𝜒)) |
| 8 | | rcp-NDASM2of3 196 |
. . . . 5
⊢ ((𝛾 ∧ ¬ 𝜓
∧ 𝜑) → ¬ 𝜓) |
| 9 | 7, 8 | profeliml-P4.5a 385 |
. . . 4
⊢ ((𝛾 ∧ ¬ 𝜓
∧ 𝜑) → 𝜒) |
| 10 | 9 | rcp-NDIMI3 225 |
. . 3
⊢ ((𝛾 ∧ ¬ 𝜓)
→ (𝜑 → 𝜒)) |
| 11 | 10 | ndoril-P3.10 175 |
. 2
⊢ ((𝛾 ∧ ¬ 𝜓)
→ ((𝜑 → 𝜓) ∨ (𝜑 →
𝜒))) |
| 12 | | ndexclmid-P3.16.AC 251 |
. 2
⊢ (𝛾 → (𝜓 ∨ ¬
𝜓)) |
| 13 | 3, 11, 12 | rcp-NDORE2 235 |
1
⊢ (𝛾 → ((𝜑 →
𝜓) ∨ (𝜑
→ 𝜒))) |