PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  sepimorr-P4.9c

Theorem sepimorr-P4.9c 412
Description: Separate Right Disjunction from Implication.
Hypothesis
Ref Expression
sepimorr-P4.9c.1 (𝛾 → (𝜑 → (𝜓𝜒)))
Assertion
Ref Expression
sepimorr-P4.9c (𝛾 → ((𝜑𝜓) ∨ (𝜑𝜒)))

Proof of Theorem sepimorr-P4.9c
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . 4 ((𝛾𝜓) → 𝜓)
21axL1-P3.21 252 . . 3 ((𝛾𝜓) → (𝜑𝜓))
32ndorir-P3.11 176 . 2 ((𝛾𝜓) → ((𝜑𝜓) ∨ (𝜑𝜒)))
4 rcp-NDASM3of3 197 . . . . . 6 ((𝛾 ∧ ¬ 𝜓𝜑) → 𝜑)
5 sepimorr-P4.9c.1 . . . . . . 7 (𝛾 → (𝜑 → (𝜓𝜒)))
65rcp-NDIMP1add2 212 . . . . . 6 ((𝛾 ∧ ¬ 𝜓𝜑) → (𝜑 → (𝜓𝜒)))
74, 6ndime-P3.6 171 . . . . 5 ((𝛾 ∧ ¬ 𝜓𝜑) → (𝜓𝜒))
8 rcp-NDASM2of3 196 . . . . 5 ((𝛾 ∧ ¬ 𝜓𝜑) → ¬ 𝜓)
97, 8profeliml-P4.5a 385 . . . 4 ((𝛾 ∧ ¬ 𝜓𝜑) → 𝜒)
109rcp-NDIMI3 225 . . 3 ((𝛾 ∧ ¬ 𝜓) → (𝜑𝜒))
1110ndoril-P3.10 175 . 2 ((𝛾 ∧ ¬ 𝜓) → ((𝜑𝜓) ∨ (𝜑𝜒)))
12 ndexclmid-P3.16.AC 251 . 2 (𝛾 → (𝜓 ∨ ¬ 𝜓))
133, 11, 12rcp-NDORE2 235 1 (𝛾 → ((𝜑𝜓) ∨ (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-or 144  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  sepimorr-P4.9c.RC  413  sepimorr-P4.9c.CL  414
  Copyright terms: Public domain W3C validator