PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  sepimorl-P4.9b.CL

Theorem sepimorl-P4.9b.CL 411
Description: Closed Form of sepimorl-P4.9b 409.
Assertion
Ref Expression
sepimorl-P4.9b.CL (((𝜑𝜓) → 𝜒) → ((𝜑𝜒) ∧ (𝜓𝜒)))

Proof of Theorem sepimorl-P4.9b.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 (((𝜑𝜓) → 𝜒) → ((𝜑𝜓) → 𝜒))
21sepimorl-P4.9b 409 1 (((𝜑𝜓) → 𝜒) → ((𝜑𝜒) ∧ (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by:  rimoveror-P4.31b  482
  Copyright terms: Public domain W3C validator