PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rimoveror-P4.31b

Theorem rimoveror-P4.31b 482
Description: '' is Antidistributive on the Right Over '' .
Assertion
Ref Expression
rimoveror-P4.31b (((𝜑𝜓) → 𝜒) ↔ ((𝜑𝜒) ∧ (𝜓𝜒)))

Proof of Theorem rimoveror-P4.31b
StepHypRef Expression
1 sepimorl-P4.9b.CL 411 . 2 (((𝜑𝜓) → 𝜒) → ((𝜑𝜒) ∧ (𝜓𝜒)))
2 joinimandinc-P4.8a.CL 399 . . 3 (((𝜑𝜒) ∧ (𝜓𝜒)) → ((𝜑𝜓) → (𝜒𝜒)))
3 idempotor-P4.25b 451 . . . . 5 ((𝜒𝜒) ↔ 𝜒)
43subimr-P3.40b.RC 328 . . . 4 (((𝜑𝜓) → (𝜒𝜒)) ↔ ((𝜑𝜓) → 𝜒))
54rcp-NDBIEF0 240 . . 3 (((𝜑𝜓) → (𝜒𝜒)) → ((𝜑𝜓) → 𝜒))
62, 5syl-P3.24.RC 260 . 2 (((𝜑𝜒) ∧ (𝜓𝜒)) → ((𝜑𝜓) → 𝜒))
71, 6rcp-NDBII0 239 1 (((𝜑𝜓) → 𝜒) ↔ ((𝜑𝜒) ∧ (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator