| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rimoveror-P4.31b | |||
| Description: '→' is Antidistributive on the Right Over '∨' . † |
| Ref | Expression |
|---|---|
| rimoveror-P4.31b | ⊢ (((𝜑 ∨ 𝜓) → 𝜒) ↔ ((𝜑 → 𝜒) ∧ (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sepimorl-P4.9b.CL 411 | . 2 ⊢ (((𝜑 ∨ 𝜓) → 𝜒) → ((𝜑 → 𝜒) ∧ (𝜓 → 𝜒))) | |
| 2 | joinimandinc-P4.8a.CL 399 | . . 3 ⊢ (((𝜑 → 𝜒) ∧ (𝜓 → 𝜒)) → ((𝜑 ∨ 𝜓) → (𝜒 ∨ 𝜒))) | |
| 3 | idempotor-P4.25b 451 | . . . . 5 ⊢ ((𝜒 ∨ 𝜒) ↔ 𝜒) | |
| 4 | 3 | subimr-P3.40b.RC 328 | . . . 4 ⊢ (((𝜑 ∨ 𝜓) → (𝜒 ∨ 𝜒)) ↔ ((𝜑 ∨ 𝜓) → 𝜒)) |
| 5 | 4 | rcp-NDBIEF0 240 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → (𝜒 ∨ 𝜒)) → ((𝜑 ∨ 𝜓) → 𝜒)) |
| 6 | 2, 5 | syl-P3.24.RC 260 | . 2 ⊢ (((𝜑 → 𝜒) ∧ (𝜓 → 𝜒)) → ((𝜑 ∨ 𝜓) → 𝜒)) |
| 7 | 1, 6 | rcp-NDBII0 239 | 1 ⊢ (((𝜑 ∨ 𝜓) → 𝜒) ↔ ((𝜑 → 𝜒) ∧ (𝜓 → 𝜒))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 ∧ wff-and 132 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |