PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  syl-P3.24.RC

Theorem syl-P3.24.RC 260
Description: Inference Form of syl-P3.24.RC 260.
Hypotheses
Ref Expression
syl-P3.24.RC.1 (𝜑𝜓)
syl-P3.24.RC.2 (𝜓𝜒)
Assertion
Ref Expression
syl-P3.24.RC (𝜑𝜒)

Proof of Theorem syl-P3.24.RC
StepHypRef Expression
1 syl-P3.24.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
3 syl-P3.24.RC.2 . . . 4 (𝜓𝜒)
43ndtruei-P3.17 182 . . 3 (⊤ → (𝜓𝜒))
52, 4syl-P3.24 259 . 2 (⊤ → (𝜑𝜒))
65ndtruee-P3.18 183 1 (𝜑𝜒)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  oroverbiint-P4.28d  471  imoverand-P4.29a  472  imoveror-P4.29-L1  473  rimoverand-P4.31-L1  480  rimoveror-P4.31b  482  allicv-P5  614  exiav-P5  615  subeqr-P5  635  subelofl-P5  638  subelofr-P5  640  subsucc-P5  644  subaddl-P5  645  subaddr-P5  646  submultl-P5  649  submultr-P5  650  lemma-L5.02a  653  cbvallv-P5-L1  658  specw-P5  661  nfrgenw-P6  684  gennfrw-P6  685  nfrall2w-P6  694  nfrex2w-P6  695  trnsvsubw-P6  710  qremall-P6  722  qremex-P6  723  nfrgen-P6  733  gennfr-P6  734  nfrall2-P6  743  nfrex2-P6  744  allic-P6  745  exia-P6  746  lemma-L6.04a  749  trnsvsub-P6  763  spliteq-P6-L1  775  exgennfrcl-L6  814  nfrall2d-P6  819  nfrex2d-P6  820  ndalle-P7.18  843  ndexi-P7.19  844  alli-P7  947  alloverimex-P7  948  dfexistsint-P7  960  dfnfreealtif-P7  964  alloverim-P7  970  qimeqallb-P7  976  qimeqalla-P7  1050  cbvall-P7-L1  1060  cbvex-P7-L1  1065  exallnfr-P8  1092  nfrcond-P8  1108
  Copyright terms: Public domain W3C validator