PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  cbvallv-P5-L1

Theorem cbvallv-P5-L1 658
Description: Lemma for cbvallv-P5 659.
Hypothesis
Ref Expression
cbvallv-P5-L1.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvallv-P5-L1 (∀𝑥𝜑 → ∀𝑦𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦

Proof of Theorem cbvallv-P5-L1
StepHypRef Expression
1 ax-L5 17 . 2 (∀𝑥𝜑 → ∀𝑦𝑥𝜑)
2 cbvallv-P5-L1.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32lemma-L5.02a 653 . . 3 (∀𝑥𝜑𝜓)
43alloverim-P5.RC.GEN 592 . 2 (∀𝑦𝑥𝜑 → ∀𝑦𝜓)
51, 4syl-P3.24.RC 260 1 (∀𝑥𝜑 → ∀𝑦𝜓)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  cbvallv-P5  659
  Copyright terms: Public domain W3C validator