PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  lemma-L5.02a

Theorem lemma-L5.02a 653
Description: A lemma used for bound variable substitution and specialization theorems.

'𝑥' cannot occur in either '𝑡' or '𝜓'.

The '' in the hypothesis is replaced with a '' in specisub-P5 654 to make the practical usage more clear.

Hypothesis
Ref Expression
lemma-L5.02a.1 (𝑥 = 𝑡 → (𝜑𝜓))
Assertion
Ref Expression
lemma-L5.02a (∀𝑥𝜑𝜓)
Distinct variable groups:   𝜓,𝑥   𝑡,𝑥

Proof of Theorem lemma-L5.02a
StepHypRef Expression
1 lemma-L5.02a.1 . . . . 5 (𝑥 = 𝑡 → (𝜑𝜓))
21imcomm-P3.27.RC 266 . . . 4 (𝜑 → (𝑥 = 𝑡𝜓))
32dalloverimex-P5.RC.GEN 607 . . 3 (∀𝑥𝜑 → (∃𝑥 𝑥 = 𝑡 → ∃𝑥𝜓))
4 axL6ex-P5 625 . . 3 𝑥 𝑥 = 𝑡
53, 4mae-P3.23.RC 258 . 2 (∀𝑥𝜑 → ∃𝑥𝜓)
6 axL5ex-P5 613 . 2 (∃𝑥𝜓𝜓)
75, 6syl-P3.24.RC 260 1 (∀𝑥𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  specisub-P5  654  cbvallv-P5-L1  658  specw-P5  661
  Copyright terms: Public domain W3C validator