PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dalloverimex-P5.RC.GEN

Theorem dalloverimex-P5.RC.GEN 607
Description: Inference Form of dalloverimex-P5 605 with Generalization.
Hypothesis
Ref Expression
dalloverimex-P5.RC.GEN.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
dalloverimex-P5.RC.GEN (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))

Proof of Theorem dalloverimex-P5.RC.GEN
StepHypRef Expression
1 dalloverimex-P5.RC.GEN.1 . . 3 (𝜑 → (𝜓𝜒))
21ax-GEN 15 . 2 𝑥(𝜑 → (𝜓𝜒))
32dalloverimex-P5.RC 606 1 (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  qimeqex-P5-L2  611  qimeqallbv-P5-L1  619  lemma-L5.02a  653  lemma-L6.04a  749
  Copyright terms: Public domain W3C validator