| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > dalloverimex-P5.RC.GEN | |||
| Description: Inference Form of dalloverimex-P5 605 with Generalization. |
| Ref | Expression |
|---|---|
| dalloverimex-P5.RC.GEN.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| dalloverimex-P5.RC.GEN | ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalloverimex-P5.RC.GEN.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | ax-GEN 15 | . 2 ⊢ ∀𝑥(𝜑 → (𝜓 → 𝜒)) |
| 3 | 2 | dalloverimex-P5.RC 606 | 1 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: qimeqex-P5-L2 611 qimeqallbv-P5-L1 619 lemma-L5.02a 653 lemma-L6.04a 749 |
| Copyright terms: Public domain | W3C validator |