PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qimeqallbv-P5-L1

Theorem qimeqallbv-P5-L1 619
Description: Lemma for qimeqallbv-P5 620.
Assertion
Ref Expression
qimeqallbv-P5-L1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))
Distinct variable group:   𝜓,𝑥

Proof of Theorem qimeqallbv-P5-L1
StepHypRef Expression
1 rcp-NDASM1of1 192 . . 3 ((𝜑𝜓) → (𝜑𝜓))
21dalloverimex-P5.RC.GEN 607 . 2 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
3 axL5ex-P5 613 . . 3 (∃𝑥𝜓𝜓)
43rcp-NDIMP0addall 207 . 2 (∀𝑥(𝜑𝜓) → (∃𝑥𝜓𝜓))
5 ax-L5 17 . . 3 (𝜓 → ∀𝑥𝜓)
65rcp-NDIMP0addall 207 . 2 (∀𝑥(𝜑𝜓) → (𝜓 → ∀𝑥𝜓))
72, 4, 6dsyl-P3.25 261 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  qimeqallbv-P5  620
  Copyright terms: Public domain W3C validator