PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qimeqallbv-P5

Theorem qimeqallbv-P5 620
Description: Second Bi-directional Form of qimeqallhalf-P5 609 ( U ( E U ) ) (variable restriction b).

Holds when '𝑥' does not occur in '𝜓'. The most general version is qimeqallb-P6 701.

Assertion
Ref Expression
qimeqallbv-P5 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
Distinct variable group:   𝜓,𝑥

Proof of Theorem qimeqallbv-P5
StepHypRef Expression
1 qimeqallbv-P5-L1 619 . 2 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))
2 qimeqallhalf-P5 609 . 2 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
31, 2rcp-NDBII0 239 1 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  qceximlv-P5  674  psubnfr-P6  784
  Copyright terms: Public domain W3C validator