| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > qimeqallbv-P5 | |||
| Description: Second Bi-directional
Form of qimeqallhalf-P5 609 ( U ↔ ( E → U ) )
(variable restriction b).
Holds when '𝑥' does not occur in '𝜓'. The most general version is qimeqallb-P6 701. |
| Ref | Expression |
|---|---|
| qimeqallbv-P5 | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qimeqallbv-P5-L1 619 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) | |
| 2 | qimeqallhalf-P5 609 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 3 | 1, 2 | rcp-NDBII0 239 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: qceximlv-P5 674 psubnfr-P6 784 |
| Copyright terms: Public domain | W3C validator |