PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qimeqallhalf-P5

Theorem qimeqallhalf-P5 609
Description: Partial Quantified Implication Equivalence Law ( ( E U ) U ).

The reverse implication is only true when '𝑥' either does not occur in '𝜑' (qimeqallav-P5 618) or '𝜓' (qimeqallbv-P5 620), or does not occur free in '𝜑' (qimeqalla-P6 699) or '𝜓' (qimeqallb-P6 701).

Assertion
Ref Expression
qimeqallhalf-P5 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))

Proof of Theorem qimeqallhalf-P5
StepHypRef Expression
1 impoe-P4.4a.CL 379 . . . . 5 𝜑 → (𝜑𝜓))
21alloverim-P5.RC.GEN 592 . . . 4 (∀𝑥 ¬ 𝜑 → ∀𝑥(𝜑𝜓))
3 allnegex-P5 597 . . . 4 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
42, 3subiml2-P4.RC 541 . . 3 (¬ ∃𝑥𝜑 → ∀𝑥(𝜑𝜓))
5 axL1-P3.21.CL 253 . . . 4 (𝜓 → (𝜑𝜓))
65alloverim-P5.RC.GEN 592 . . 3 (∀𝑥𝜓 → ∀𝑥(𝜑𝜓))
74, 6joinimandinc3-P4.RC 579 . 2 ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
8 imasor-P4.32a 487 . . 3 ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜓))
98bisym-P3.33b.RC 299 . 2 ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
107, 9subiml2-P4.RC 541 1 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-or 144  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  qimeqallav-P5  618  qimeqallbv-P5  620  nfrim-P6  689  qimeqalla-P6  699  qimeqallb-P6  701  nfrimd-P6  815
  Copyright terms: Public domain W3C validator