| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > qimeqallhalf-P5 | |||
| Description: Partial Quantified
Implication Equivalence Law ( ( E → U ) → U ).
The reverse implication is only true when '𝑥' either does not occur in '𝜑' (qimeqallav-P5 618) or '𝜓' (qimeqallbv-P5 620), or does not occur free in '𝜑' (qimeqalla-P6 699) or '𝜓' (qimeqallb-P6 701). |
| Ref | Expression |
|---|---|
| qimeqallhalf-P5 | ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impoe-P4.4a.CL 379 | . . . . 5 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 2 | 1 | alloverim-P5.RC.GEN 592 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑥(𝜑 → 𝜓)) |
| 3 | allnegex-P5 597 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 4 | 2, 3 | subiml2-P4.RC 541 | . . 3 ⊢ (¬ ∃𝑥𝜑 → ∀𝑥(𝜑 → 𝜓)) |
| 5 | axL1-P3.21.CL 253 | . . . 4 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
| 6 | 5 | alloverim-P5.RC.GEN 592 | . . 3 ⊢ (∀𝑥𝜓 → ∀𝑥(𝜑 → 𝜓)) |
| 7 | 4, 6 | joinimandinc3-P4.RC 579 | . 2 ⊢ ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| 8 | imasor-P4.32a 487 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜓)) | |
| 9 | 8 | bisym-P3.33b.RC 299 | . 2 ⊢ ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓)) |
| 10 | 7, 9 | subiml2-P4.RC 541 | 1 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 ∨ wff-or 144 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: qimeqallav-P5 618 qimeqallbv-P5 620 nfrim-P6 689 qimeqalla-P6 699 qimeqallb-P6 701 nfrimd-P6 815 |
| Copyright terms: Public domain | W3C validator |