PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qimeqallb-P6

Theorem qimeqallb-P6 701
Description: Quantified Implication Equivalence Law ( U ( E U ) ) (non-freeness condition b).
Hypothesis
Ref Expression
qimeqallb-P6.1 𝑥𝜓
Assertion
Ref Expression
qimeqallb-P6 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem qimeqallb-P6
StepHypRef Expression
1 qimeqallb-P6.1 . . 3 𝑥𝜓
21qimeqallb-P6-L1 700 . 2 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))
3 qimeqallhalf-P5 609 . 2 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
42, 3rcp-NDBII0 239 1 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-bi 104  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  solvesub-P6a  704  lemma-L6.02a  726  qceximl-P6  760  psubnfr-P6  784
  Copyright terms: Public domain W3C validator