PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qremallw-P6

Theorem qremallw-P6 702
Description: Universal Quantifier Removal (non-freeness condition - weakened form).

Requires the existence of '𝜑₁(𝑥₁)' as a replacement for '𝜑(𝑥)'.

Hypotheses
Ref Expression
qremallw-P6.1 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
qremallw-P6.2 𝑥𝜑
Assertion
Ref Expression
qremallw-P6 (∀𝑥𝜑𝜑)
Distinct variable groups:   𝜑,𝑥₁   𝜑₁,𝑥   𝑥,𝑥₁

Proof of Theorem qremallw-P6
StepHypRef Expression
1 qremallw-P6.1 . . 3 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
21specw-P5 661 . 2 (∀𝑥𝜑𝜑)
3 qremallw-P6.2 . . 3 𝑥𝜑
41, 3nfrgenw-P6 684 . 2 (𝜑 → ∀𝑥𝜑)
52, 4rcp-NDBII0 239 1 (∀𝑥𝜑𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  solvesub-P6a  704
  Copyright terms: Public domain W3C validator