Detailed syntax breakdown of Definition df-bi-D2.1
| Step | Hyp | Ref
| Expression |
| 1 | | wff-ph |
. . . . 5
wff 𝜑 |
| 2 | | wff-ps |
. . . . 5
wff 𝜓 |
| 3 | 1, 2 | wff-bi 104 |
. . . 4
wff (𝜑 ↔ 𝜓) |
| 4 | 1, 2 | wff-imp 10 |
. . . . . 6
wff (𝜑 → 𝜓) |
| 5 | 2, 1 | wff-imp 10 |
. . . . . . 7
wff (𝜓 → 𝜑) |
| 6 | 5 | wff-neg 9 |
. . . . . 6
wff ¬ (𝜓 → 𝜑) |
| 7 | 4, 6 | wff-imp 10 |
. . . . 5
wff ((𝜑 → 𝜓) →
¬ (𝜓 → 𝜑)) |
| 8 | 7 | wff-neg 9 |
. . . 4
wff ¬ ((𝜑 → 𝜓) →
¬ (𝜓 → 𝜑)) |
| 9 | 3, 8 | wff-imp 10 |
. . 3
wff ((𝜑 ↔ 𝜓) →
¬ ((𝜑 → 𝜓) → ¬ (𝜓
→ 𝜑))) |
| 10 | 8, 3 | wff-imp 10 |
. . . 4
wff (¬ ((𝜑 → 𝜓) →
¬ (𝜓 → 𝜑)) → (𝜑 ↔
𝜓)) |
| 11 | 10 | wff-neg 9 |
. . 3
wff ¬ (¬ ((𝜑 → 𝜓) →
¬ (𝜓 → 𝜑)) → (𝜑 ↔
𝜓)) |
| 12 | 9, 11 | wff-imp 10 |
. 2
wff (((𝜑 ↔ 𝜓) →
¬ ((𝜑 → 𝜓) → ¬ (𝜓
→ 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) →
¬ (𝜓 → 𝜑)) → (𝜑 ↔
𝜓))) |
| 13 | 12 | wff-neg 9 |
1
wff ¬ (((𝜑 ↔ 𝜓) →
¬ ((𝜑 → 𝜓) → ¬ (𝜓
→ 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) →
¬ (𝜓 → 𝜑)) → (𝜑 ↔
𝜓))) |