PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  df-bi-D2.1

Definition df-bi-D2.1 107
Description: Definition of Biconditional, ''. Read as "if and only if".
Assertion
Ref Expression
df-bi-D2.1 ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))

Detailed syntax breakdown of Definition df-bi-D2.1
StepHypRef Expression
1 wff-ph . . . . 5 wff 𝜑
2 wff-ps . . . . 5 wff 𝜓
31, 2wff-bi 104 . . . 4 wff (𝜑𝜓)
41, 2wff-imp 10 . . . . . 6 wff (𝜑𝜓)
52, 1wff-imp 10 . . . . . . 7 wff (𝜓𝜑)
65wff-neg 9 . . . . . 6 wff ¬ (𝜓𝜑)
74, 6wff-imp 10 . . . . 5 wff ((𝜑𝜓) → ¬ (𝜓𝜑))
87wff-neg 9 . . . 4 wff ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))
93, 8wff-imp 10 . . 3 wff ((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))
108, 3wff-imp 10 . . . 4 wff (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))
1110wff-neg 9 . . 3 wff ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))
129, 11wff-imp 10 . 2 wff (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))
1312wff-neg 9 1 wff ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))
Colors of variables: wff objvar term class
This definition is referenced by:  dfbiif-P2.3a  108  dfbionlyif-P2.3b  109  dfbialt-P2.4  110
  Copyright terms: Public domain W3C validator