PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dfbionlyif-P2.3b

Theorem dfbionlyif-P2.3b 109
Description: Necessary Condition for (i.e. "Only If" part of) df-bi-D2.1 107.
Assertion
Ref Expression
dfbionlyif-P2.3b ((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))

Proof of Theorem dfbionlyif-P2.3b
StepHypRef Expression
1 df-bi-D2.1 107 . 2 ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))
21simpl-L2.2a.SH 96 1 ((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  bifwd-P2.5a  111  birev-P2.5b  115
  Copyright terms: Public domain W3C validator