PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  birev-P2.5b

Theorem birev-P2.5b 115
Description: '' Reverse Implication.
Assertion
Ref Expression
birev-P2.5b ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem birev-P2.5b
StepHypRef Expression
1 dfbionlyif-P2.3b 109 . 2 ((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))
2 simpr-L2.2b 97 . 2 (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜓𝜑))
31, 2syl-P1.2 34 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  birev-P2.5b.SH  116  birev-P2.5b.AC.SH  117  birev-P2.5b.2AC.SH  118  bisym-P2.6b  124  subneg-P2.7  127  subiml-P2.8a  128  subimr-P2.8b  130
  Copyright terms: Public domain W3C validator