PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  birev-P2.5b.AC.SH

Theorem birev-P2.5b.AC.SH 117
Description: Deductive Form of birev-P2.5b 115
Hypothesis
Ref Expression
birev-P2.5b.AC.SH.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
birev-P2.5b.AC.SH (𝛾 → (𝜓𝜑))

Proof of Theorem birev-P2.5b.AC.SH
StepHypRef Expression
1 birev-P2.5b.AC.SH.1 . 2 (𝛾 → (𝜑𝜓))
2 birev-P2.5b 115 . . . 4 ((𝜑𝜓) → (𝜓𝜑))
32axL1.SH 30 . . 3 (𝛾 → ((𝜑𝜓) → (𝜓𝜑)))
43rcp-FR1.SH 40 . 2 ((𝛾 → (𝜑𝜓)) → (𝛾 → (𝜓𝜑)))
51, 4ax-MP 14 1 (𝛾 → (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  ndbier-P3.15  180
  Copyright terms: Public domain W3C validator