PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  birev-P2.5b.SH

Theorem birev-P2.5b.SH 116
Description: Inference from birev-P2.5b 115.
Hypothesis
Ref Expression
birev-P2.5b.SH.1 (𝜑𝜓)
Assertion
Ref Expression
birev-P2.5b.SH (𝜓𝜑)

Proof of Theorem birev-P2.5b.SH
StepHypRef Expression
1 birev-P2.5b.SH.1 . 2 (𝜑𝜓)
2 birev-P2.5b 115 . 2 ((𝜑𝜓) → (𝜓𝜑))
31, 2ax-MP 14 1 (𝜓𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  cmb-P2.9c  138  orintl-P2.11a  146  orintr-P2.11b  148  true-P2.14  156
  Copyright terms: Public domain W3C validator