PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  orintr-P2.11b

Theorem orintr-P2.11b 148
Description: Right Introduction Rule for ''.
Assertion
Ref Expression
orintr-P2.11b (𝜑 → (𝜑𝜓))

Proof of Theorem orintr-P2.11b
StepHypRef Expression
1 poe-P1.11b 66 . 2 (𝜑 → (¬ 𝜑𝜓))
2 df-or-D2.3 145 . . 3 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
32birev-P2.5b.SH 116 . 2 ((¬ 𝜑𝜓) → (𝜑𝜓))
41, 3syl-P1.2 34 1 (𝜑 → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-or-D2.3 145
This theorem is referenced by:  orintr-P2.11b.AC.SH  149  exclmid-P2.12  152
  Copyright terms: Public domain W3C validator