PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  poe-P1.11b

Theorem poe-P1.11b 66
Description: Principle of Explosion B.

A contradiction implies anything. The other form is poe-P1.11a 65.

Assertion
Ref Expression
poe-P1.11b (𝜑 → (¬ 𝜑𝜓))

Proof of Theorem poe-P1.11b
StepHypRef Expression
1 poe-P1.11a 65 . 2 𝜑 → (𝜑𝜓))
21imcomm-P1.6.SH 49 1 (𝜑 → (¬ 𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  poe-P1.11b.AC.2SH  67  orintl-P2.11a  146  orintr-P2.11b  148
  Copyright terms: Public domain W3C validator