PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imcomm-P1.6.SH

Theorem imcomm-P1.6.SH 49
Description: Inference from imcomm-P1.6 48.
Hypothesis
Ref Expression
imcomm-P1.6.SH.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
imcomm-P1.6.SH (𝜓 → (𝜑𝜒))

Proof of Theorem imcomm-P1.6.SH
StepHypRef Expression
1 imcomm-P1.6.SH.1 . 2 (𝜑 → (𝜓𝜒))
2 imcomm-P1.6 48 . 2 ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))
31, 2ax-MP 14 1 (𝜓 → (𝜑𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  imsubl-P1.7b  54  mpt-P1.8  57  poe-P1.11b  66
  Copyright terms: Public domain W3C validator