PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imcomm-P1.6.AC.SH

Theorem imcomm-P1.6.AC.SH 50
Description: Deductive Form of imcomm-P1.6 48
Hypothesis
Ref Expression
imcomm-P1.6.AC.SH.1 (𝛾 → (𝜑 → (𝜓𝜒)))
Assertion
Ref Expression
imcomm-P1.6.AC.SH (𝛾 → (𝜓 → (𝜑𝜒)))

Proof of Theorem imcomm-P1.6.AC.SH
StepHypRef Expression
1 imcomm-P1.6.AC.SH.1 . 2 (𝛾 → (𝜑 → (𝜓𝜒)))
2 imcomm-P1.6 48 . . . 4 ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))
32axL1.SH 30 . . 3 (𝛾 → ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒))))
43rcp-FR1.SH 40 . 2 ((𝛾 → (𝜑 → (𝜓𝜒))) → (𝛾 → (𝜓 → (𝜑𝜒))))
51, 4ax-MP 14 1 (𝛾 → (𝜓 → (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  import-L2.1a  91  export-L2.1b  93
  Copyright terms: Public domain W3C validator