| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > import-L2.1a | |||
| Description: Importation Lemma. |
| Ref | Expression |
|---|---|
| import-L2.1a | ⊢ ((𝜑 → (𝜓 → 𝜒)) → (¬ (𝜑 → ¬ 𝜓) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trnsp-P1.15c 80 | . . . . 5 ⊢ ((𝜓 → 𝜒) → (¬ 𝜒 → ¬ 𝜓)) | |
| 2 | 1 | axL1.SH 30 | . . . 4 ⊢ (𝜑 → ((𝜓 → 𝜒) → (¬ 𝜒 → ¬ 𝜓))) |
| 3 | 2 | axL2.SH 31 | . . 3 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (¬ 𝜒 → ¬ 𝜓))) |
| 4 | 3 | imcomm-P1.6.AC.SH 50 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (¬ 𝜒 → (𝜑 → ¬ 𝜓))) |
| 5 | 4 | trnsp-P1.15b.AC.SH 79 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (¬ (𝜑 → ¬ 𝜓) → 𝜒)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem is referenced by: import-L2.1a.SH 92 |
| Copyright terms: Public domain | W3C validator |