PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  import-L2.1a

Theorem import-L2.1a 91
Description: Importation Lemma.
Assertion
Ref Expression
import-L2.1a ((𝜑 → (𝜓𝜒)) → (¬ (𝜑 → ¬ 𝜓) → 𝜒))

Proof of Theorem import-L2.1a
StepHypRef Expression
1 trnsp-P1.15c 80 . . . . 5 ((𝜓𝜒) → (¬ 𝜒 → ¬ 𝜓))
21axL1.SH 30 . . . 4 (𝜑 → ((𝜓𝜒) → (¬ 𝜒 → ¬ 𝜓)))
32axL2.SH 31 . . 3 ((𝜑 → (𝜓𝜒)) → (𝜑 → (¬ 𝜒 → ¬ 𝜓)))
43imcomm-P1.6.AC.SH 50 . 2 ((𝜑 → (𝜓𝜒)) → (¬ 𝜒 → (𝜑 → ¬ 𝜓)))
54trnsp-P1.15b.AC.SH 79 1 ((𝜑 → (𝜓𝜒)) → (¬ (𝜑 → ¬ 𝜓) → 𝜒))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  import-L2.1a.SH  92
  Copyright terms: Public domain W3C validator