PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  import-L2.1a.SH

Theorem import-L2.1a.SH 92
Description: Inference from import-L2.1a 91.
Hypothesis
Ref Expression
import-L2.1a.SH.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
import-L2.1a.SH (¬ (𝜑 → ¬ 𝜓) → 𝜒)

Proof of Theorem import-L2.1a.SH
StepHypRef Expression
1 import-L2.1a.SH.1 . 2 (𝜑 → (𝜓𝜒))
2 import-L2.1a 91 . 2 ((𝜑 → (𝜓𝜒)) → (¬ (𝜑 → ¬ 𝜓) → 𝜒))
31, 2ax-MP 14 1 (¬ (𝜑 → ¬ 𝜓) → 𝜒)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  simpl-L2.2a  95  simpr-L2.2b  97
  Copyright terms: Public domain W3C validator