PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  simpr-L2.2b

Theorem simpr-L2.2b 97
Description: Right Simplification Lemma.
Assertion
Ref Expression
simpr-L2.2b (¬ (𝜑 → ¬ 𝜓) → 𝜓)

Proof of Theorem simpr-L2.2b
StepHypRef Expression
1 id-P1.4 36 . . 3 (𝜓𝜓)
21axL1.SH 30 . 2 (𝜑 → (𝜓𝜓))
32import-L2.1a.SH 92 1 (¬ (𝜑 → ¬ 𝜓) → 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  simpr-L2.2b.SH  98  birev-P2.5b  115  simpr-P2.9b  136
  Copyright terms: Public domain W3C validator