| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > id-P1.4 | |||
| Description: Implication Identity. |
| Ref | Expression |
|---|---|
| id-P1.4 | ⊢ (𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-L1 11 | . 2 ⊢ (𝜑 → (𝜑 → 𝜑)) | |
| 2 | ax-L1 11 | . . 3 ⊢ (𝜑 → ((𝜑 → 𝜑) → 𝜑)) | |
| 3 | 2 | axL2.SH 31 | . 2 ⊢ ((𝜑 → (𝜑 → 𝜑)) → (𝜑 → 𝜑)) |
| 4 | 1, 3 | ax-MP 14 | 1 ⊢ (𝜑 → 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-MP 14 |
| This theorem is referenced by: rae-P1.5 37 mpt-P1.8 57 simpr-L2.2b 97 cmb-L2.3 99 bijust-P2.2-L1 105 biref-P2.6a 123 bitrns-P2.6c 126 truejust-P2.13 154 true-P2.14 156 |
| Copyright terms: Public domain | W3C validator |