PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  id-P1.4

Theorem id-P1.4 36
Description: Implication Identity.
Assertion
Ref Expression
id-P1.4 (𝜑𝜑)

Proof of Theorem id-P1.4
StepHypRef Expression
1 ax-L1 11 . 2 (𝜑 → (𝜑𝜑))
2 ax-L1 11 . . 3 (𝜑 → ((𝜑𝜑) → 𝜑))
32axL2.SH 31 . 2 ((𝜑 → (𝜑𝜑)) → (𝜑𝜑))
41, 3ax-MP 14 1 (𝜑𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  rae-P1.5  37  mpt-P1.8  57  simpr-L2.2b  97  cmb-L2.3  99  bijust-P2.2-L1  105  biref-P2.6a  123  bitrns-P2.6c  126  truejust-P2.13  154  true-P2.14  156
  Copyright terms: Public domain W3C validator