PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rae-P1.5

Theorem rae-P1.5 37
Description: Redundant Antecedent Elimination.
Assertion
Ref Expression
rae-P1.5 ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))

Proof of Theorem rae-P1.5
StepHypRef Expression
1 ax-L2 12 . 2 ((𝜑 → (𝜑𝜓)) → ((𝜑𝜑) → (𝜑𝜓)))
2 id-P1.4 36 . 2 (𝜑𝜑)
31, 2mae-P1.1 33 1 ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  rae-P1.5.SH  38
  Copyright terms: Public domain W3C validator