PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rae-P1.5.SH

Theorem rae-P1.5.SH 38
Description: Inference from rae-P1.5 37.
Hypothesis
Ref Expression
rae-P1.5.SH.1 (𝜑 → (𝜑𝜓))
Assertion
Ref Expression
rae-P1.5.SH (𝜑𝜓)

Proof of Theorem rae-P1.5.SH
StepHypRef Expression
1 rae-P1.5.SH.1 . 2 (𝜑 → (𝜑𝜓))
2 rae-P1.5 37 . 2 ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))
31, 2ax-MP 14 1 (𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  clav-P1.12  68
  Copyright terms: Public domain W3C validator